These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 30405540)

  • 21. Genome-wide epigenetic variation among ash trees differing in susceptibility to a fungal disease.
    Sollars ESA; Buggs RJA
    BMC Genomics; 2018 Jun; 19(1):502. PubMed ID: 29954338
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Canditate metabolites for ash dieback tolerance in Fraxinus excelsior.
    Nemesio-Gorriz M; Menezes RC; Paetz C; Hammerbacher A; Steenackers M; Schamp K; Höfte M; Svatoš A; Gershenzon J; Douglas GC
    J Exp Bot; 2020 Oct; 71(19):6074-6083. PubMed ID: 32598444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback.
    Gross A; Holdenrieder O; Pautasso M; Queloz V; Sieber TN
    Mol Plant Pathol; 2014 Jan; 15(1):5-21. PubMed ID: 24118686
    [TBL] [Abstract][Full Text] [Related]  

  • 24. First Report of the Ash Dieback Pathogen Hymenoscyphus fraxineus in Korea.
    Han JG; Shrestha B; Hosoya T; Lee KH; Sung GH; Shin HD
    Mycobiology; 2014 Dec; 42(4):391-6. PubMed ID: 25606012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Traces of
    Agan A; Tedersoo L; Hanso M; Drenkhan R
    Plant Dis; 2023 Feb; 107(2):344-349. PubMed ID: 35822887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Host-Pathogen Interactions in Leaf Petioles of Common Ash and Manchurian Ash Infected with
    Nielsen LR; Nagy NE; Piqueras S; Kosawang C; Thygesen LG; Hietala AM
    Microorganisms; 2022 Feb; 10(2):. PubMed ID: 35208829
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing Genotypic and Environmental Effects on Endophyte Communities of
    Lahiri A; Murphy BR; Hodkinson TR
    J Fungi (Basel); 2021 Jul; 7(7):. PubMed ID: 34356944
    [No Abstract]   [Full Text] [Related]  

  • 28. Fungal Communities in Re-Emerging
    Bakys R; Bajerkevičienė G; Pliūra A; Marčiulynas A; Marčiulynienė D; Lynikienė J; Mishcherikova V; Menkis A
    Microorganisms; 2022 Sep; 10(10):. PubMed ID: 36296216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The invasive forest pathogen Hymenoscyphus fraxineus boosts mortality and triggers niche replacement of European ash (Fraxinus excelsior).
    Díaz-Yáñez O; Mola-Yudego B; Timmermann V; Tollefsrud MM; Hietala AM; Oliva J
    Sci Rep; 2020 Mar; 10(1):5310. PubMed ID: 32210276
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genomic basis of European ash tree resistance to ash dieback fungus.
    Stocks JJ; Metheringham CL; Plumb WJ; Lee SJ; Kelly LJ; Nichols RA; Buggs RJA
    Nat Ecol Evol; 2019 Dec; 3(12):1686-1696. PubMed ID: 31740845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Comparative Analysis of Ash Leaf-Colonizing Bacterial Communities Identifies Putative Antagonists of
    Ulrich K; Becker R; Behrendt U; Kube M; Ulrich A
    Front Microbiol; 2020; 11():966. PubMed ID: 32547506
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fungal diversity and seasonal succession in ash leaves infected by the invasive ascomycete Hymenoscyphus fraxineus.
    Cross H; Sønstebø JH; Nagy NE; Timmermann V; Solheim H; Børja I; Kauserud H; Carlsen T; Rzepka B; Wasak K; Vivian-Smith A; Hietala AM
    New Phytol; 2017 Feb; 213(3):1405-1417. PubMed ID: 27716950
    [TBL] [Abstract][Full Text] [Related]  

  • 33. First Report of
    Linaldeddu BT; Bregant C; Montecchio L; Brglez A; Piškur B; Ogris N
    Plant Dis; 2022 Jan; 106(1):26-29. PubMed ID: 34515500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomic prediction of resistance to
    Meger J; Ulaszewski B; Pałucka M; Kozioł C; Burczyk J
    Evol Appl; 2024 May; 17(5):e13694. PubMed ID: 38707993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amplifying feedback loop between growth and wood anatomical characteristics of Fraxinus excelsior explains size-related susceptibility to ash dieback.
    Klesse S; von Arx G; Gossner MM; Hug C; Rigling A; Queloz V
    Tree Physiol; 2021 May; 41(5):683-696. PubMed ID: 32705118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A first assessment of Fraxinus excelsior (common ash) susceptibility to Hymenoscyphus fraxineus (ash dieback) throughout the British Isles.
    Stocks JJ; Buggs RJA; Lee SJ
    Sci Rep; 2017 Nov; 7(1):16546. PubMed ID: 29185457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptional responses in developing lesions of European common ash (Fraxinus excelsior) reveal genes responding to infection by Hymenoscyphus fraxineus.
    Sahraei SE; Cleary M; Stenlid J; Brandström Durling M; Elfstrand M
    BMC Plant Biol; 2020 Oct; 20(1):455. PubMed ID: 33023496
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A role for the asexual spores in infection of Fraxinus excelsior by the ash-dieback fungus Hymenoscyphus fraxineus.
    Fones HN; Mardon C; Gurr SJ
    Sci Rep; 2016 Oct; 6():34638. PubMed ID: 27694963
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ability of the ash dieback pathogen to reproduce and to induce damage on its host are controlled by different environmental parameters.
    Marçais B; Giraudel A; Husson C
    PLoS Pathog; 2023 Apr; 19(4):e1010558. PubMed ID: 37079641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ash leaf metabolomes reveal differences between trees tolerant and susceptible to ash dieback disease.
    Sambles CM; Salmon DL; Florance H; Howard TP; Smirnoff N; Nielsen LR; McKinney LV; Kjær ED; Buggs RJA; Studholme DJ; Grant M
    Sci Data; 2017 Dec; 4():170190. PubMed ID: 29257137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.