BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 30405689)

  • 1. Deep Learning-Based Multi-Omics Data Integration Reveals Two Prognostic Subtypes in High-Risk Neuroblastoma.
    Zhang L; Lv C; Jin Y; Cheng G; Fu Y; Yuan D; Tao Y; Guo Y; Ni X; Shi T
    Front Genet; 2018; 9():477. PubMed ID: 30405689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning approach based on multi-omics data integration to construct a risk stratification prediction model for skin cutaneous melanoma.
    Li W; Huang Q; Peng Y; Pan S; Hu M; Wang P; He Y
    J Cancer Res Clin Oncol; 2023 Nov; 149(17):15923-15938. PubMed ID: 37673824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based ovarian cancer subtypes identification using multi-omics data.
    Guo LY; Wu AH; Wang YX; Zhang LP; Chai H; Liang XF
    BioData Min; 2020; 13():10. PubMed ID: 32863885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data.
    Xu J; Wu P; Chen Y; Meng Q; Dawood H; Dawood H
    BMC Bioinformatics; 2019 Oct; 20(1):527. PubMed ID: 31660856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Prognostic Subtyping of Muscle-Invasive Bladder Cancer Revealed by Deep Learning-Based Multi-Omics Data Integration.
    Zhang X; Wang J; Lu J; Su L; Wang C; Huang Y; Zhang X; Zhu X
    Front Oncol; 2021; 11():689626. PubMed ID: 34422643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).
    Ma T; Zhang A
    BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MMDAE-HGSOC: A novel method for high-grade serous ovarian cancer molecular subtypes classification based on multi-modal deep autoencoder.
    Wang HQ; Li HL; Han JL; Feng ZP; Deng HX; Han X
    Comput Biol Chem; 2023 Aug; 105():107906. PubMed ID: 37336028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Deep Learning Based Multi-Omics Parallel Integration Survival Subtypes in Lung Cancer Using Reverse Phase Protein Array Data.
    Takahashi S; Asada K; Takasawa K; Shimoyama R; Sakai A; Bolatkan A; Shinkai N; Kobayashi K; Komatsu M; Kaneko S; Sese J; Hamamoto R
    Biomolecules; 2020 Oct; 10(10):. PubMed ID: 33086649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis.
    Tong L; Mitchel J; Chatlin K; Wang MD
    BMC Med Inform Decis Mak; 2020 Sep; 20(1):225. PubMed ID: 32933515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survival prediction in patients with colon adenocarcinoma via multi-omics data integration using a deep learning algorithm.
    Lv J; Wang J; Shang X; Liu F; Guo S
    Biosci Rep; 2020 Dec; 40(12):. PubMed ID: 33258470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-omics integration for neuroblastoma clinical endpoint prediction.
    Francescatto M; Chierici M; Rezvan Dezfooli S; Zandonà A; Jurman G; Furlanello C
    Biol Direct; 2018 Apr; 13(1):5. PubMed ID: 29615097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep multi-omics integration by learning correlation-maximizing representation identifies prognostically stratified cancer subtypes.
    Ji Y; Dutta P; Davuluri R
    Bioinform Adv; 2023; 3(1):vbad075. PubMed ID: 37424943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ProgCAE: a deep learning-based method that integrates multi-omics data to predict cancer subtypes.
    Liu Q; Song K
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37232375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping.
    Madhumita ; Paul S
    Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrative omics reveals MYCN as a global suppressor of cellular signalling and enables network-based therapeutic target discovery in neuroblastoma.
    Duffy DJ; Krstic A; Halasz M; Schwarzl T; Fey D; Iljin K; Mehta JP; Killick K; Whilde J; Turriziani B; Haapa-Paananen S; Fey V; Fischer M; Westermann F; Henrich KO; Bannert S; Higgins DG; Kolch W
    Oncotarget; 2015 Dec; 6(41):43182-201. PubMed ID: 26673823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimodal deep learning approaches for single-cell multi-omics data integration.
    Athaya T; Ripan RC; Li X; Hu H
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37651607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deeply integrating latent consistent representations in high-noise multi-omics data for cancer subtyping.
    Cai Y; Wang S
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. moSCminer: a cell subtype classification framework based on the attention neural network integrating the single-cell multi-omics dataset on the cloud.
    Choi JM; Park C; Chae H
    PeerJ; 2024; 12():e17006. PubMed ID: 38426141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer.
    Malik V; Kalakoti Y; Sundar D
    BMC Genomics; 2021 Mar; 22(1):214. PubMed ID: 33761889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning data integration for better risk stratification models of bladder cancer.
    Poirion OB; Chaudhary K; Garmire LX
    AMIA Jt Summits Transl Sci Proc; 2018; 2017():197-206. PubMed ID: 29888072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.