These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30405746)

  • 1. Real-Time Evaluation of the Signal Processing of sEMG Used in Limb Exoskeleton Rehabilitation System.
    Gao B; Wei C; Ma H; Yang S; Ma X; Zhang S
    Appl Bionics Biomech; 2018; 2018():1391032. PubMed ID: 30405746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Research on Control System of an Exoskeleton Upper-limb Rehabilitation Robot].
    Wang L; Hu X; Hu J; Fang Y; He R; Yu H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec; 33(6):1168-75. PubMed ID: 29715415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. sEMG-Based Motion Recognition of Upper Limb Rehabilitation Using the Improved Yolo-v4 Algorithm.
    Bu D; Guo S; Li H
    Life (Basel); 2022 Jan; 12(1):. PubMed ID: 35054457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards an SEMG-based tele-operated robot for masticatory rehabilitation.
    Kalani H; Moghimi S; Akbarzadeh A
    Comput Biol Med; 2016 Aug; 75():243-56. PubMed ID: 27322596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Channel Synergy-based Human-Robot Interface for a Lower Limb Walking Assistance Exoskeleton.
    Shi K; Huang R; Mu F; Peng Z; Yin J; Cheng H
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1076-1081. PubMed ID: 34891474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A real-time stable-control gait switching strategy for lower-limb rehabilitation exoskeleton.
    Guo Z; Wang C; Song C
    PLoS One; 2020; 15(8):e0238247. PubMed ID: 32853239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and verification of a human-robot interaction system for upper limb exoskeleton rehabilitation.
    Wendong W; Hanhao L; Menghan X; Yang C; Xiaoqing Y; Xing M; Bing Z
    Med Eng Phys; 2020 May; 79():19-25. PubMed ID: 32205023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Mirror Bilateral Neuro-Rehabilitation Robot System with the sEMG-Based Real-Time Patient Active Participant Assessment.
    Yang Z; Guo S; Hirata H; Kawanishi M
    Life (Basel); 2021 Nov; 11(12):. PubMed ID: 34947820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot.
    Li Z; Wang B; Sun F; Yang C; Xie Q; Zhang W
    IEEE J Biomed Health Inform; 2014 May; 18(3):1043-50. PubMed ID: 24235314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a biological signal-based evaluator for robot-assisted upper-limb rehabilitation: a pilot study.
    Sheng B; Tang L; Moosman OM; Deng C; Xie S; Zhang Y
    Australas Phys Eng Sci Med; 2019 Sep; 42(3):789-801. PubMed ID: 31372900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. sEMG-Based Gain-Tuned Compliance Control for the Lower Limb Rehabilitation Robot during Passive Training.
    Tian J; Wang H; Zheng S; Ning Y; Zhang X; Niu J; Vladareanu L
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MCSNet: Channel Synergy-Based Human-Exoskeleton Interface With Surface Electromyogram.
    Shi K; Huang R; Peng Z; Mu F; Yang X
    Front Neurosci; 2021; 15():704603. PubMed ID: 34867145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Analysis of an Upper Limb Rehabilitation Robot Based on Multimodal Control.
    Ren H; Liu T; Wang J
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Real-Time Control Method for Upper Limb Exoskeleton Based on Active Torque Prediction Model.
    Li S; Zhang L; Meng Q; Yu H
    Bioengineering (Basel); 2023 Dec; 10(12):. PubMed ID: 38136032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Real-Time Stability Control Method Through sEMG Interface for Lower Extremity Rehabilitation Exoskeletons.
    Wang C; Guo Z; Duan S; He B; Yuan Y; Wu X
    Front Neurosci; 2021; 15():645374. PubMed ID: 33927589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SVM-Based Classification of sEMG Signals for Upper-Limb Self-Rehabilitation Training.
    Cai S; Chen Y; Huang S; Wu Y; Zheng H; Li X; Xie L
    Front Neurorobot; 2019; 13():31. PubMed ID: 31214010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing Surface EMG Signals for Exoskeleton Motion Control.
    Yin G; Zhang X; Chen D; Li H; Chen J; Chen C; Lemos S
    Front Neurorobot; 2020; 14():40. PubMed ID: 32765250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A SEMG-angle model based on HMM for human robot interaction.
    Chen Y; Liang L; Wu M; Dong Q
    Technol Health Care; 2019; 27(S1):383-395. PubMed ID: 31045555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digital twin rehabilitation system based on self-balancing lower limb exoskeleton.
    Wang W; He Y; Li F; Li J; Liu J; Wu X
    Technol Health Care; 2023; 31(1):103-115. PubMed ID: 35754239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A low-cost and portable wrist exoskeleton using EEG-sEMG combined strategy for prolonged active rehabilitation.
    Yang S; Li M; Wang J; Shi Z; He B; Xie J; Xu G
    Front Neurorobot; 2023; 17():1161187. PubMed ID: 37292117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.