These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 30405886)

  • 1. Mechanisms through which lithocholic acid delays yeast chronological aging under caloric restriction conditions.
    Arlia-Ciommo A; Leonov A; Mohammad K; Beach A; Richard VR; Bourque SD; Burstein MT; Goldberg AA; Kyryakov P; Gomez-Perez A; Koupaki O; Titorenko VI
    Oncotarget; 2018 Oct; 9(79):34945-34971. PubMed ID: 30405886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caloric restriction delays yeast chronological aging by remodeling carbohydrate and lipid metabolism, altering peroxisomal and mitochondrial functionalities, and postponing the onsets of apoptotic and liponecrotic modes of regulated cell death.
    Arlia-Ciommo A; Leonov A; Beach A; Richard VR; Bourque SD; Burstein MT; Kyryakov P; Gomez-Perez A; Koupaki O; Feldman R; Titorenko VI
    Oncotarget; 2018 Mar; 9(22):16163-16184. PubMed ID: 29662634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caloric restriction creates a metabolic pattern of chronological aging delay that in budding yeast differs from the metabolic design established by two other geroprotectors.
    Mohammad K; Titorenko VI
    Oncotarget; 2021 Mar; 12(7):608-625. PubMed ID: 33868583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific changes in mitochondrial lipidome alter mitochondrial proteome and increase the geroprotective efficiency of lithocholic acid in chronologically aging yeast.
    Leonov A; Arlia-Ciommo A; Bourque SD; Koupaki O; Kyryakov P; Dakik P; McAuley M; Medkour Y; Mohammad K; Di Maulo T; Titorenko VI
    Oncotarget; 2017 May; 8(19):30672-30691. PubMed ID: 28410198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caloric restriction causes a distinct reorganization of the lipidome in quiescent and non-quiescent cells of budding yeast.
    Mohammad K; Orfanos E; Titorenko VI
    Oncotarget; 2021 Nov; 12(24):2351-2374. PubMed ID: 34853658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of fifteen new geroprotective plant extracts and identification of cellular processes they affect to prolong the chronological lifespan of budding yeast.
    Dakik P; Rodriguez MEL; Junio JAB; Mitrofanova D; Medkour Y; Tafakori T; Taifour T; Lutchman V; Samson E; Arlia-Ciommo A; Rukundo B; Simard É; Titorenko VI
    Oncotarget; 2020 Jun; 11(23):2182-2203. PubMed ID: 32577164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms that Link Chronological Aging to Cellular Quiescence in Budding Yeast.
    Mohammad K; Baratang Junio JA; Tafakori T; Orfanos E; Titorenko VI
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32630624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast chronological life span in a TOR-independent manner, by modulating housekeeping longevity assurance processes.
    Goldberg AA; Richard VR; Kyryakov P; Bourque SD; Beach A; Burstein MT; Glebov A; Koupaki O; Boukh-Viner T; Gregg C; Juneau M; English AM; Thomas DY; Titorenko VI
    Aging (Albany NY); 2010 Jul; 2(7):393-414. PubMed ID: 20622262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome.
    Beach A; Richard VR; Bourque S; Boukh-Viner T; Kyryakov P; Gomez-Perez A; Arlia-Ciommo A; Feldman R; Leonov A; Piano A; Svistkova V; Titorenko VI
    Cell Cycle; 2015; 14(11):1643-56. PubMed ID: 25839782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithocholic acid extends longevity of chronologically aging yeast only if added at certain critical periods of their lifespan.
    Burstein MT; Kyryakov P; Beach A; Richard VR; Koupaki O; Gomez-Perez A; Leonov A; Levy S; Noohi F; Titorenko VI
    Cell Cycle; 2012 Sep; 11(18):3443-62. PubMed ID: 22894934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caloric restriction extends yeast chronological lifespan via a mechanism linking cellular aging to cell cycle regulation, maintenance of a quiescent state, entry into a non-quiescent state and survival in the non-quiescent state.
    Leonov A; Feldman R; Piano A; Arlia-Ciommo A; Lutchman V; Ahmadi M; Elsaser S; Fakim H; Heshmati-Moghaddam M; Hussain A; Orfali S; Rajen H; Roofigari-Esfahani N; Rosanelli L; Titorenko VI
    Oncotarget; 2017 Sep; 8(41):69328-69350. PubMed ID: 29050207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromitophagy is a longevity assurance process that in chronologically aging yeast limited in calorie supply sustains functional mitochondria and maintains cellular lipid homeostasis.
    Richard VR; Leonov A; Beach A; Burstein MT; Koupaki O; Gomez-Perez A; Levy S; Pluska L; Mattie S; Rafesh R; Iouk T; Sheibani S; Greenwood M; Vali H; Titorenko VI
    Aging (Albany NY); 2013 Apr; 5(4):234-69. PubMed ID: 23553280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms by which PE21, an extract from the white willow
    Medkour Y; Mohammad K; Arlia-Ciommo A; Svistkova V; Dakik P; Mitrofanova D; Rodriguez MEL; Junio JAB; Taifour T; Escudero P; Goltsios FF; Soodbakhsh S; Maalaoui H; Simard É; Titorenko VI
    Oncotarget; 2019 Oct; 10(56):5780-5816. PubMed ID: 31645900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-autonomous mechanisms of chronological aging in the yeast
    Arlia-Ciommo A; Leonov A; Piano A; Svistkova V; Titorenko VI
    Microb Cell; 2014 May; 1(6):163-178. PubMed ID: 28357241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. COCOA (Theobroma cacao) Polyphenol-Rich Extract Increases the Chronological Lifespan of Saccharomyces cerevisiae.
    Baiges I; Arola L
    J Frailty Aging; 2016; 5(3):186-90. PubMed ID: 29240368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Empirical verification of evolutionary theories of aging.
    Kyryakov P; Gomez-Perez A; Glebov A; Asbah N; Bruno L; Meunier C; Iouk T; Titorenko VI
    Aging (Albany NY); 2016 Oct; 8(10):2568-2589. PubMed ID: 27783562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms Underlying the Essential Role of Mitochondrial Membrane Lipids in Yeast Chronological Aging.
    Medkour Y; Dakik P; McAuley M; Mohammad K; Mitrofanova D; Titorenko VI
    Oxid Med Cell Longev; 2017; 2017():2916985. PubMed ID: 28593023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Communications between Mitochondria, the Nucleus, Vacuoles, Peroxisomes, the Endoplasmic Reticulum, the Plasma Membrane, Lipid Droplets, and the Cytosol during Yeast Chronological Aging.
    Dakik P; Titorenko VI
    Front Genet; 2016; 7():177. PubMed ID: 27729926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast.
    Choi JS; Lee CK
    Biochem Biophys Res Commun; 2013 Sep; 439(1):126-31. PubMed ID: 23942118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pairwise combinations of chemical compounds that delay yeast chronological aging through different signaling pathways display synergistic effects on the extent of aging delay.
    Dakik P; McAuley M; Chancharoen M; Mitrofanova D; Lozano Rodriguez ME; Baratang Junio JA; Lutchman V; Cortes B; Simard É; Titorenko VI
    Oncotarget; 2019 Jan; 10(3):313-338. PubMed ID: 30719227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.