These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30406076)

  • 21. Signatures of Coherent Phonon Transport in Ultralow Thermal Conductivity Two-Dimensional Ruddlesden-Popper Phase Perovskites.
    Christodoulides AD; Guo P; Dai L; Hoffman JM; Li X; Zuo X; Rosenmann D; Brumberg A; Kanatzidis MG; Schaller RD; Malen JA
    ACS Nano; 2021 Mar; 15(3):4165-4172. PubMed ID: 33661603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Progress of Research in Negative Thermal Expansion Materials: Paradigm Shift in the Control of Thermal Expansion.
    Takenaka K
    Front Chem; 2018; 6():267. PubMed ID: 30013970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient Calculation of the Negative Thermal Expansion in ZrW
    Vila FD; Hayashi ST; Rehr JJ
    Front Chem; 2018; 6():296. PubMed ID: 30105223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetic structure and uniaxial negative thermal expansion in antiferromagnetic CrSb.
    Yuan J; Song Y; Xing X; Chen J
    Dalton Trans; 2020 Dec; 49(48):17605-17611. PubMed ID: 33241795
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antiferroelectricity-Induced Negative Thermal Expansion in Double Perovskite Pb
    Zhao H; Pan Z; Shen X; Zhao J; Lu D; Zhang J; Hu Z; Kuo CY; Chen CT; Chan TS; Sahle CJ; Dong C; Nishikubo T; Koike T; Deng ZY; Hong J; Yu R; Yu P; Azuma M; Jin C; Long Y
    Small; 2024 Jan; 20(2):e2305219. PubMed ID: 37658514
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Directional Anisotropy of the Vibrational Modes in 2D-Layered Perovskites.
    Dhanabalan B; Leng YC; Biffi G; Lin ML; Tan PH; Infante I; Manna L; Arciniegas MP; Krahne R
    ACS Nano; 2020 Apr; 14(4):4689-4697. PubMed ID: 32275388
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Uniaxial Negative Thermal Expansion of Polyvinyl Acetate Thin Film.
    Liu Y; Sakurai K
    Langmuir; 2018 Sep; 34(38):11272-11280. PubMed ID: 30133290
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intergrowth between the Oxynitride Perovskite SrTaO
    Suemoto Y; Masubuchi Y; Nagamine Y; Matsutani A; Shibahara T; Yamazaki K; Kikkawa S
    Inorg Chem; 2018 Aug; 57(15):9086-9095. PubMed ID: 30010331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Layered Hybrid Formamidinium Lead Iodide Perovskites: Challenges and Opportunities.
    Milić JV; Zakeeruddin SM; Grätzel M
    Acc Chem Res; 2021 Jun; 54(12):2729-2740. PubMed ID: 34085817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interplay between Phonons and Anisotropic Elasticity Drives Negative Thermal Expansion in PbTiO_{3}.
    Ritz ET; Benedek NA
    Phys Rev Lett; 2018 Dec; 121(25):255901. PubMed ID: 30608816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insight into the Relationship between Negative Thermal Expansion and Structure Flexibility: The Case of Zn(CN)
    Wang J; Gao Q; Sanson A; Sun Q; Liang E
    Inorg Chem; 2022 Aug; 61(34):13239-13243. PubMed ID: 35972905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control of Thermal Expansion in TaVO
    Zheng Y; Jiao Y; Qiao Y; Sanson A; Guo J; Sun Q; Liang E; Gao Q
    Inorg Chem; 2023 Jun; 62(22):8543-8550. PubMed ID: 37222722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pressure enhanced negative thermal expansion in 2H CuScO
    Chang D; Tang C; Hu Q; Wang C; Jia Y
    Phys Chem Chem Phys; 2022 Jul; 24(27):16622-16627. PubMed ID: 35766117
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anisotropic thermal expansion of SnSe from first-principles calculations based on Grüneisen's theory.
    Liu G; Zhou J; Wang H
    Phys Chem Chem Phys; 2017 Jun; 19(23):15187-15193. PubMed ID: 28561818
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Layer number dependent ferroelasticity in 2D Ruddlesden-Popper organic-inorganic hybrid perovskites.
    Xiao X; Zhou J; Song K; Zhao J; Zhou Y; Rudd PN; Han Y; Li J; Huang J
    Nat Commun; 2021 Feb; 12(1):1332. PubMed ID: 33637731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlling Oxygen Mobility in Ruddlesden-Popper Oxides.
    Lee D; Lee HN
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding structural distortions in hybrid layered perovskites with the n = 1 Ruddlesden-Popper structure.
    Liu T; Holzapfel NP; Woodward PM
    IUCrJ; 2023 Jul; 10(Pt 4):385-396. PubMed ID: 37307102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.
    Chen J; Hu L; Deng J; Xing X
    Chem Soc Rev; 2015 Jun; 44(11):3522-67. PubMed ID: 25864730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and Negative Thermal Expansion in Zr
    Yuan H; Wang C; Gao Q; Ge X; Sun H; Lapidus SH; Guo J; Chao M; Jia Y; Liang E
    Inorg Chem; 2020 Mar; 59(6):4090-4095. PubMed ID: 32129614
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uniaxial Expansion of the 2D Ruddlesden-Popper Perovskite Family for Improved Environmental Stability.
    Spanopoulos I; Hadar I; Ke W; Tu Q; Chen M; Tsai H; He Y; Shekhawat G; Dravid VP; Wasielewski MR; Mohite AD; Stoumpos CC; Kanatzidis MG
    J Am Chem Soc; 2019 Apr; 141(13):5518-5534. PubMed ID: 30827098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.