These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 30406163)

  • 1. Whole-rock and mineral chemical data from a profile of the ~900 Ma Niutishan Fe-Ti-rich sill in XuZhou, North China.
    Su X; Peng P; Wang C; Sun F; Zhang Z; Zhou X
    Data Brief; 2018 Dec; 21():727-735. PubMed ID: 30406163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating mineralogy, geochemistry and aeromagnetic data for detecting Fe-Ti ore deposits bearing layered mafic intrusion, Akab El-Negum, Eastern Desert, Egypt.
    Kharbish S; Eldosouky AM; Amer O
    Sci Rep; 2022 Sep; 12(1):15474. PubMed ID: 36104469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrite and Organic Compounds Coexisting in Intrusive Mafic Xenoliths (Hyblean Plateau, Sicily): Implications for Subsurface Abiogenesis.
    Scribano V; Simakov SK; Finocchiaro C; Correale A; Scirè S
    Orig Life Evol Biosph; 2019 Jun; 49(1-2):19-47. PubMed ID: 31302843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trace element partitioning in basaltic systems as a function of oxygen fugacity.
    Leuthold J; Blundy J; Ulmer P
    Contrib Mineral Petrol; 2023; 178(12):95. PubMed ID: 38617115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New identification and significance of Early Cretaceous mafic rocks in the interior South China Block.
    Su HM; Jiang SY; Shao JB; Zhang DY; Wu XK; Huang XQ
    Sci Rep; 2021 May; 11(1):11396. PubMed ID: 34059781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trace element geochemistry of coarse-grained angrites from Northwest Africa: Implications for their petrogenesis on the angrite parent body.
    Sanborn ME; Wadhwa M
    Meteorit Planet Sci; 2021 Mar; 56(3):482-499. PubMed ID: 34316246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Petrographic, mineralogic, and x-ray fluorescence analysis of lunar igneous-type rocks and spherules.
    Brown GM; Emeleus CH; Holland JG; Phillips R
    Science; 1970 Jan; 167(3918):599-601. PubMed ID: 17781511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructural evidence for crystallization regimes in mafic intrusions: a case study from the Little Minch Sill Complex, Scotland.
    Nicoli G; Holness M; Neufeld J; Farr R
    Contrib Mineral Petrol; 2018; 173(12):97. PubMed ID: 30930465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin and age of the Eisenkappel gabbro to granite suite (Carinthia, SE Austrian Alps).
    Miller C; Thöni M; Goessler W; Tessadri R
    Lithos; 2011 Jul; 125(1-2):434-448. PubMed ID: 26525511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geochemistry of approximately 1.9 Ga sedimentary rocks from northeastern Labrador, Canada.
    Hayashi KI; Fujisawa H; Holland HD; Ohmoto H
    Geochim Cosmochim Acta; 1997; 61(19):4115-37. PubMed ID: 11540490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contamination in mafic mineral-rich calc-alkaline granites: a geochemical and Sr-Nd isotope study of the Neoproterozoic Piedade Granite, SE Brazil.
    Leite RJ; Janasi VA; Martins L
    An Acad Bras Cienc; 2006 Jun; 78(2):345-71. PubMed ID: 16710571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paralavas in the Cretaceous Paraná volcanic province, Brazil - A genetic interpretation of the volcanic rocks containing phenocrysts and glass.
    Baggio SB; Hartmann LA; Bello RM
    An Acad Bras Cienc; 2016; 88(4):2167-2193. PubMed ID: 27991957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Petrographic and mineral-glass chemical dataset of igneous rock clasts from Early Oligocene Aveto-Petrignacola Formation (Northern Italy).
    Mattioli M; Lustrino M; Ronca S; Bianchini G
    Data Brief; 2020 Aug; 31():106015. PubMed ID: 32760764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron microprobe analysis of lunar samples.
    Adler I; Walter LS; Lowman PD; Glass BP; French BM; Philpotts JA; Heinrich KJ; Goldstein JI
    Science; 1970 Jan; 167(3918):590-2. PubMed ID: 17781507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Major Element, REE, and Other Trace Element Behavior in Amphibolite Weathering under Semiarid Conditions in Southern India.
    Sharma A; Rajamani V
    J Geol; 2000 Jul; 108(4):487-496. PubMed ID: 10856017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mineralogical and petrological investigations of lunar samples.
    Bailey JC; Champness PE; Dunham AC; Esson J; Fyfe WS; Mackenzie WS; Stumpfl EF; Zussman J
    Science; 1970 Jan; 167(3918):592-4. PubMed ID: 17781508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Source and fractionation controls on subduction-related plutons and dike swarms in southern Patagonia (Torres del Paine area) and the low Nb/Ta of upper crustal igneous rocks.
    Müntener O; Ewing T; Baumgartner LP; Manzini M; Roux T; Pellaud P; Allemann L
    Contrib Mineral Petrol; 2018; 173(5):38. PubMed ID: 29681649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behaviour of chemical elements during weathering of pyroclastic rocks, Hong Kong.
    Malpas J; Duzgoren-Aydin NS; Aydin A
    Environ Int; 2001 May; 26(5-6):359-68. PubMed ID: 11392752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Major, trace and rare earth elements of apatite and zircon U-Pb ages of ore-associated and barren granitoids from the Edong ore district, South China.
    Duan DF; Jiang SY
    Data Brief; 2018 Oct; 20():1587-1601. PubMed ID: 30258964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experiment-based model for the petrogenesis of high-alumina basalts.
    Beard JS; Lofgren GE
    Science; 1992 Oct; 258(5079):112-5. PubMed ID: 17835894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.