BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30406223)

  • 1. AFM assessing of nanomechanical fingerprints for cancer early diagnosis and classification: from single cell to tissue level.
    Stylianou A; Lekka M; Stylianopoulos T
    Nanoscale; 2018 Dec; 10(45):20930-20945. PubMed ID: 30406223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the elastic properties of extracellular matrix models by atomic force microscopy.
    Otero J; Navajas D; Alcaraz J
    Methods Cell Biol; 2020; 156():59-83. PubMed ID: 32222227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pancreatic Cancer Presents Distinct Nanomechanical Properties During Progression.
    Stylianou A; Voutouri C; Mpekris F; Stylianopoulos T
    Ann Biomed Eng; 2023 Jul; 51(7):1602-1615. PubMed ID: 36813931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanomechanical properties of solid tumors as treatment monitoring biomarkers.
    Stylianou A; Mpekris F; Voutouri C; Papoui A; Constantinidou A; Kitiris E; Kailides M; Stylianopoulos T
    Acta Biomater; 2022 Dec; 154():324-334. PubMed ID: 36244596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping of biomechanical properties of cell lines on altered matrix stiffness using atomic force microscopy.
    Wala J; Das S
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1523-1536. PubMed ID: 31907681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanomechanical characterization of living mammary tissues by atomic force microscopy.
    Plodinec M; Lim RY
    Methods Mol Biol; 2015; 1293():231-46. PubMed ID: 26040692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomechanical fingerprints of gamma radiation damage to DNA.
    Lee G; Muramoto GG; Chute JP; Marszalek PE
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7359-63. PubMed ID: 19908788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward the realization of reproducible Atomic Force Microscopy measurements of elastic modulus in biological samples.
    Demichelis A; Divieto C; Mortati L; Pavarelli S; Sassi G; Sassi MP
    J Biomech; 2015 Apr; 48(6):1099-104. PubMed ID: 25661874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanomechanical-based classification of prostate tumor using atomic force microscopy.
    Zeng J; Zhang Y; Xu R; Chen H; Tang X; Zhang S; Yang H
    Prostate; 2023 Dec; 83(16):1591-1601. PubMed ID: 37759151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination of bladder cancer cells from normal urothelial cells with high specificity and sensitivity: combined application of atomic force microscopy and modulated Raman spectroscopy.
    Canetta E; Riches A; Borger E; Herrington S; Dholakia K; Adya AK
    Acta Biomater; 2014 May; 10(5):2043-55. PubMed ID: 24406196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic force microscopy as a tool for assessing the cellular elasticity and adhesiveness to identify cancer cells and tissues.
    Zemła J; Danilkiewicz J; Orzechowska B; Pabijan J; Seweryn S; Lekka M
    Semin Cell Dev Biol; 2018 Jan; 73():115-124. PubMed ID: 28694112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic force microscopy-based cancer diagnosis by detecting cancer-specific biomolecules and cells.
    Kwon T; Gunasekaran S; Eom K
    Biochim Biophys Acta Rev Cancer; 2019 Apr; 1871(2):367-378. PubMed ID: 30951816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic force microscopy reveals age-dependent changes in nanomechanical properties of the extracellular matrix of native human menisci: implications for joint degeneration and osteoarthritis.
    Kwok J; Grogan S; Meckes B; Arce F; Lal R; D'Lima D
    Nanomedicine; 2014 Nov; 10(8):1777-85. PubMed ID: 24972006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bidirectional mechanobiology between cells and their local extracellular matrix probed by atomic force microscopy.
    Alcaraz J; Otero J; Jorba I; Navajas D
    Semin Cell Dev Biol; 2018 Jan; 73():71-81. PubMed ID: 28743639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomechanical and topographical imaging of living cells by atomic force microscopy with colloidal probes.
    Puricelli L; Galluzzi M; Schulte C; Podestà A; Milani P
    Rev Sci Instrum; 2015 Mar; 86(3):033705. PubMed ID: 25832236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic force microscopy for revealing micro/nanoscale mechanics in tumor metastasis: from single cells to microenvironmental cues.
    Li M; Xi N; Wang YC; Liu LQ
    Acta Pharmacol Sin; 2021 Mar; 42(3):323-339. PubMed ID: 32807839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ECM macromolecules: height-mapping and nano-mechanics using atomic force microscopy.
    Hodson NW; Kielty CM; Sherratt MJ
    Methods Mol Biol; 2009; 522():123-41. PubMed ID: 19247600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micropipette-assisted atomic force microscopy for single-cell 3D manipulations and nanomechanical measurements.
    Feng Y; Li M
    Nanoscale; 2023 Aug; 15(32):13346-13358. PubMed ID: 37526589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomechanical Signatures of Extracellular Vesicles from Hematologic Cancer Patients Unraveled by Atomic Force Microscopy for Liquid Biopsy.
    Feng Y; Liu M; Li X; Li M; Xing X; Liu L
    Nano Lett; 2023 Feb; 23(4):1591-1599. PubMed ID: 36723485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of endogenous extracellular matrix in biomechanical properties of human skin model.
    Pillet F; Gibot L; Madi M; Rols MP; Dague E
    Biofabrication; 2017 May; 9(2):025017. PubMed ID: 28493850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.