These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 30406305)

  • 1. Explaining the neural activity distribution associated with discrete movement sequences: Evidence for parallel functional systems.
    Verwey WB; Jouen AL; Dominey PF; Ventre-Dominey J
    Cogn Affect Behav Neurosci; 2019 Feb; 19(1):138-153. PubMed ID: 30406305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning a keying sequence you never executed: evidence for independent associative and motor chunk learning.
    Verwey WB; Wright DL
    Acta Psychol (Amst); 2014 Sep; 151():24-31. PubMed ID: 24929277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct modes of executing movement sequences: reacting, associating, and chunking.
    Verwey WB; Abrahamse EL
    Acta Psychol (Amst); 2012 Jul; 140(3):274-82. PubMed ID: 22705631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions from associative and explicit sequence knowledge to the execution of discrete keying sequences.
    Verwey WB
    Acta Psychol (Amst); 2015 May; 157():122-30. PubMed ID: 25771072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Simon effect in a discrete sequence production task: Key-specific stimuli cannot be ignored due to attentional capture.
    Verwey WB; Wright DL; Van der Lubbe RHJ
    Acta Psychol (Amst); 2020 Apr; 205():103044. PubMed ID: 32146318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Processing modes and parallel processors in producing familiar keying sequences.
    Verwey WB
    Psychol Res; 2003 May; 67(2):106-22. PubMed ID: 12739146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The stuff that motor chunks are made of: Spatial instead of motor representations?
    Verwey WB; Groen EC; Wright DL
    Exp Brain Res; 2016 Feb; 234(2):353-66. PubMed ID: 26487177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cognitive processing in new and practiced discrete keying sequences.
    Verwey WB; Abrahamse EL; de Kleine E
    Front Psychol; 2010; 1():32. PubMed ID: 21833202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociable roles of preSMA in motor sequence chunking and hand switching-a TMS study.
    Muessgens D; Thirugnanasambandam N; Shitara H; Popa T; Hallett M
    J Neurophysiol; 2016 Dec; 116(6):2637-2646. PubMed ID: 27655967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased load on general motor preparation and visual-working memory while preparing familiar as compared to unfamiliar movement sequences.
    De Kleine E; Van der Lubbe RH
    Brain Cogn; 2011 Mar; 75(2):126-34. PubMed ID: 21094573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concatenating familiar movement sequences: the versatile cognitive processor.
    Verwey WB
    Acta Psychol (Amst); 2001 Jan; 106(1-2):69-95. PubMed ID: 11256340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cognitive and neural foundations of discrete sequence skill: a TMS study.
    Ruitenberg MF; Verwey WB; Schutter DJ; Abrahamse EL
    Neuropsychologia; 2014 Apr; 56():229-38. PubMed ID: 24486768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isoluminant stimuli in a familiar discrete keying sequence task can be ignored.
    Verwey WB
    Psychol Res; 2021 Mar; 85(2):793-807. PubMed ID: 31811366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observing Action Sequences Elicits Sequence-Specific Neural Representations in Frontoparietal Brain Regions.
    Apšvalka D; Cross ES; Ramsey R
    J Neurosci; 2018 Nov; 38(47):10114-10128. PubMed ID: 30282731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cognitive framework for explaining serial processing and sequence execution strategies.
    Verwey WB; Shea CH; Wright DL
    Psychon Bull Rev; 2015 Feb; 22(1):54-77. PubMed ID: 25421407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skill in discrete keying sequences is execution rate specific.
    Verwey WB; Dronkers WJ
    Psychol Res; 2019 Mar; 83(2):235-246. PubMed ID: 29299672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct neural systems underlie learning visuomotor and spatial representations of motor skills.
    Parsons MW; Harrington DL; Rao SM
    Hum Brain Mapp; 2005 Mar; 24(3):229-47. PubMed ID: 15543554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C-SMB 2.0: Integrating over 25 years of motor sequencing research with the Discrete Sequence Production task.
    Verwey WB
    Psychon Bull Rev; 2024 Jun; 31(3):931-978. PubMed ID: 37848660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of sequence length on the execution of familiar keying sequences: lasting segmentation and preparation?
    Verwey WB
    J Mot Behav; 2003 Dec; 35(4):343-54. PubMed ID: 14607772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of instruction on motor skill learning.
    Popp NJ; Yokoi A; Gribble PL; Diedrichsen J
    J Neurophysiol; 2020 Nov; 124(5):1449-1457. PubMed ID: 32997556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.