These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 30406305)

  • 21. Motor skill learning in the middle-aged: limited development of motor chunks and explicit sequence knowledge.
    Verwey WB; Abrahamse EL; Ruitenberg MF; Jiménez L; de Kleine E
    Psychol Res; 2011 Sep; 75(5):406-22. PubMed ID: 21287199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic Trial-by-Trial Recoding of Task-Set Representations in the Frontoparietal Cortex Mediates Behavioral Flexibility.
    Qiao L; Zhang L; Chen A; Egner T
    J Neurosci; 2017 Nov; 37(45):11037-11050. PubMed ID: 28972126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brain Network Mechanisms Underlying Motor Enhancement by Transcranial Entrainment of Gamma Oscillations.
    Moisa M; Polania R; Grueschow M; Ruff CC
    J Neurosci; 2016 Nov; 36(47):12053-12065. PubMed ID: 27881788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Repetition costs in sequence chunking.
    Brown RM; Koch I
    Psychon Bull Rev; 2024 Apr; 31(2):802-818. PubMed ID: 37726598
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Training Motor Sequences: Effects of Speed and Accuracy Instructions.
    Barnhoorn JS; Panzer S; Godde B; Verwey WB
    J Mot Behav; 2019; 51(5):540-550. PubMed ID: 30395789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Motor learning and chunking in dyslexia.
    De Kleine E; Verwey WB
    J Mot Behav; 2009 Jul; 41(4):331-7. PubMed ID: 19508959
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brain areas involved in the control of speed during a motor sequence of the foot: real movement versus mental imagery.
    Sauvage C; Jissendi P; Seignan S; Manto M; Habas C
    J Neuroradiol; 2013 Oct; 40(4):267-80. PubMed ID: 23433722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for lasting sequence segmentation in the discrete sequence-production task.
    Verwey WB; Eikelboom T
    J Mot Behav; 2003 Jun; 35(2):171-81. PubMed ID: 12711587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relative cortico-subcortical shift in brain activity but preserved training-induced neural modulation in older adults during bimanual motor learning.
    Santos Monteiro T; Beets IAM; Boisgontier MP; Gooijers J; Pauwels L; Chalavi S; King B; Albouy G; Swinnen SP
    Neurobiol Aging; 2017 Oct; 58():54-67. PubMed ID: 28708977
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Learning and production of movement sequences: behavioral, neurophysiological, and modeling perspectives.
    Rhodes BJ; Bullock D; Verwey WB; Averbeck BB; Page MP
    Hum Mov Sci; 2004 Nov; 23(5):699-746. PubMed ID: 15589629
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Independent generation of sequence elements by motor cortex.
    Zimnik AJ; Churchland MM
    Nat Neurosci; 2021 Mar; 24(3):412-424. PubMed ID: 33619403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. fMRI investigation of cortical and subcortical networks in the learning of abstract and effector-specific representations of motor sequences.
    Bapi RS; Miyapuram KP; Graydon FX; Doya K
    Neuroimage; 2006 Aug; 32(2):714-27. PubMed ID: 16798015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural topography and content of movement representations.
    de Lange FP; Hagoort P; Toni I
    J Cogn Neurosci; 2005 Jan; 17(1):97-112. PubMed ID: 15701242
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task.
    Gobel EW; Parrish TB; Reber PJ
    Neuroimage; 2011 Oct; 58(4):1150-7. PubMed ID: 21771663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combining Repetition Suppression and Pattern Analysis Provides New Insights into the Role of M1 and Parietal Areas in Skilled Sequential Actions.
    Berlot E; Popp NJ; Grafton ST; Diedrichsen J
    J Neurosci; 2021 Sep; 41(36):7649-7661. PubMed ID: 34312223
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sequence learning is driven by improvements in motor planning.
    Ariani G; Diedrichsen J
    J Neurophysiol; 2019 Jun; 121(6):2088-2100. PubMed ID: 30969809
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Binding During Sequence Learning Does Not Alter Cortical Representations of Individual Actions.
    Beukema P; Diedrichsen J; Verstynen TD
    J Neurosci; 2019 Aug; 39(35):6968-6977. PubMed ID: 31296537
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural Organization of Hierarchical Motor Sequence Representations in the Human Neocortex.
    Yokoi A; Diedrichsen J
    Neuron; 2019 Sep; 103(6):1178-1190.e7. PubMed ID: 31345643
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How effector-specific is the effect of sequence learning by motor execution and motor imagery?
    Sobierajewicz J; Przekoracka-Krawczyk A; Jaśkowski W; van der Lubbe RHJ
    Exp Brain Res; 2017 Dec; 235(12):3757-3769. PubMed ID: 28965127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.