These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 3040656)

  • 1. Activity of fiber-degrading microorganisms in the pig large intestine.
    Varel VH
    J Anim Sci; 1987 Aug; 65(2):488-96. PubMed ID: 3040656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of dietary fiber on xylanolytic and cellulolytic bacteria of adult pigs.
    Varel VH; Robinson IM; Jung HJ
    Appl Environ Microbiol; 1987 Jan; 53(1):22-6. PubMed ID: 3030194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulolytic bacteria from pig large intestine.
    Varel VH; Fryda SJ; Robinson IM
    Appl Environ Microbiol; 1984 Jan; 47(1):219-21. PubMed ID: 6696420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of high-fiber diet on bacterial populations in gastrointestinal tracts of obese- and lean-genotype pigs.
    Varel VH; Pond WG; Pekas JC; Yen JT
    Appl Environ Microbiol; 1982 Jul; 44(1):107-12. PubMed ID: 6289744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial perspective on fiber utilization by swine.
    Varel VH; Yen JT
    J Anim Sci; 1997 Oct; 75(10):2715-22. PubMed ID: 9331875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of cellulose and forage fiber fractions by ruminal cellulolytic bacteria alone and in coculture with phenolic monomer-degrading bacteria.
    Varel VH; Jung HG; Krumholz LR
    J Anim Sci; 1991 Dec; 69(12):4993-5000. PubMed ID: 1667013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonstarch polysaccharide-degrading enzymes alter the microbial community and the fermentation patterns of barley cultivars and wheat products in an in vitro model of the porcine gastrointestinal tract.
    Bindelle J; Pieper R; Montoya CA; Van Kessel AG; Leterme P
    FEMS Microbiol Ecol; 2011 Jun; 76(3):553-63. PubMed ID: 21348887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro fermentative capacity of swine large intestine: comparison between native Lantang and commercial Duroc breeds.
    Cheng PH; Liang JB; Wu YB; Wang Y; Tufarelli V; Laudadio V; Liao XD
    Anim Sci J; 2017 Aug; 88(8):1141-1148. PubMed ID: 28026141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Community structure and fibrolytic activities of anaerobic rumen fungi in dromedary camels.
    Rabee AE; Forster RJ; Elekwachi CO; Kewan KZ; Sabra EA; Shawket SM; Mahrous HA; Khamiss OA
    J Basic Microbiol; 2019 Jan; 59(1):101-110. PubMed ID: 30303547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of forage type on ruminal bacterial populations and subsequent in vitro fiber digestion.
    Jung HG; Varel VH
    J Dairy Sci; 1988 Jun; 71(6):1526-35. PubMed ID: 2841364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enumeration and activity of cellulolytic bacteria from gestating swine fed various levels of dietary fiber.
    Varel VH; Pond WG
    Appl Environ Microbiol; 1985 Apr; 49(4):858-62. PubMed ID: 2988439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postprandial changes of fiber-degrading microbes in the rumen of sheep fed diets varying in type of forage as monitored by real-time PCR and automated ribosomal intergenic spacer analysis.
    Saro C; Ranilla MJ; Carro MD
    J Anim Sci; 2012 Dec; 90(12):4487-94. PubMed ID: 23100580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro digestion and fermentation characteristics of canola co-products simulate their digestion in the pig intestine.
    Woyengo TA; Jha R; Beltranena E; Zijlstra RT
    Animal; 2016 Jun; 10(6):911-8. PubMed ID: 26598244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of direct-fed fibrolytic enzymes on diet digestibility and ruminal activity in sheep fed a grass hay-based diet.
    Giraldo LA; Tejido ML; Ranilla MJ; Ramos S; Carro MD
    J Anim Sci; 2008 Jul; 86(7):1617-23. PubMed ID: 18344313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of dietary physically effective fiber on ruminal fermentation and the fatty acid profile of milk in dairy goats.
    Li F; Li Z; Li S; Ferguson JD; Cao Y; Yao J; Sun F; Wang X; Yang T
    J Dairy Sci; 2014; 97(4):2281-90. PubMed ID: 24508430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochanin A improves fibre fermentation by cellulolytic bacteria.
    Harlow BE; Flythe MD; Aiken GE
    J Appl Microbiol; 2018 Jan; 124(1):58-66. PubMed ID: 29112792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of dietary fibers on fermentation in the human large intestine.
    Ehle FR; Robertson JB; Van Soest PJ
    J Nutr; 1982 Jan; 112(1):158-66. PubMed ID: 6275053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the amount of dietary fiber on the available energy from hindgut fermentation in growing pigs: use of cannulated pigs and in vitro fermentation.
    Anguita M; Canibe N; PĂ©rez JF; Jensen BB
    J Anim Sci; 2006 Oct; 84(10):2766-78. PubMed ID: 16971578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disappearance of nutrients and energy in the stomach and small intestine, cecum, and colon of pigs fed corn-soybean meal diets containing distillers dried grains with solubles, wheat middlings, or soybean hulls.
    Jaworski NW; Stein HH
    J Anim Sci; 2017 Feb; 95(2):727-739. PubMed ID: 28380581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thoughts on fiber utilization in swine.
    Pond WG
    J Anim Sci; 1987 Aug; 65(2):497-9. PubMed ID: 3040657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.