These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30406610)

  • 1. Validation and Extension of a Fluid-Structure Interaction Model of the Healthy Aortic Valve.
    Tango AM; Salmonsmith J; Ducci A; Burriesci G
    Cardiovasc Eng Technol; 2018 Dec; 9(4):739-751. PubMed ID: 30406610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Validation of a Numerical Simulation of Leaflet Kinematics in a Polymeric Aortic Valve Under Physiological Conditions.
    Gharaie SH; Mosadegh B; Morsi Y
    Cardiovasc Eng Technol; 2018 Mar; 9(1):42-52. PubMed ID: 29322329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a numerical FSI simulation of an aortic BMHV by in vitro PIV experiments.
    Annerel S; Claessens T; Degroote J; Segers P; Vierendeels J
    Med Eng Phys; 2014 Aug; 36(8):1014-23. PubMed ID: 24924383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.
    Mao W; Li K; Sun W
    Cardiovasc Eng Technol; 2016 Dec; 7(4):374-388. PubMed ID: 27844463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow-Structure Interaction Simulations of the Aortic Heart Valve at Physiologic Conditions: The Role of Tissue Constitutive Model.
    Gilmanov A; Stolarski H; Sotiropoulos F
    J Biomech Eng; 2018 Apr; 140(4):. PubMed ID: 29305610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid-structure interaction of a pulsatile flow with an aortic valve model: A combined experimental and numerical study.
    Sigüenza J; Pott D; Mendez S; Sonntag SJ; Kaufmann TAS; Steinseifer U; Nicoud F
    Int J Numer Method Biomed Eng; 2018 Apr; 34(4):e2945. PubMed ID: 29181891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological vortices in the sinuses of Valsalva: An in vitro approach for bio-prosthetic valves.
    Toninato R; Salmon J; Susin FM; Ducci A; Burriesci G
    J Biomech; 2016 Sep; 49(13):2635-2643. PubMed ID: 27282961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coronary Flow Impacts Aortic Leaflet Mechanics and Aortic Sinus Hemodynamics.
    Moore BL; Dasi LP
    Ann Biomed Eng; 2015 Sep; 43(9):2231-41. PubMed ID: 25636598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The combined role of sinuses of Valsalva and flow pulsatility improves energy loss of the aortic valve.
    Salica A; Pisani G; Morbiducci U; Scaffa R; Massai D; Audenino A; Weltert L; Guerrieri Wolf L; De Paulis R
    Eur J Cardiothorac Surg; 2016 Apr; 49(4):1222-7. PubMed ID: 26362428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro evaluation of a new aortic valved conduit.
    Sadri V; Madukauwa-David ID; Yoganathan AP
    J Thorac Cardiovasc Surg; 2021 Feb; 161(2):581-590.e6. PubMed ID: 31879167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of a fluid-structure interaction model of a heart valve using the dynamic mesh method in fluent.
    Dumont K; Stijnen JM; Vierendeels J; van de Vosse FN; Verdonck PR
    Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):139-46. PubMed ID: 15512757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of hematocrit on the hemodynamics of artificial heart valve using fluid-structure interaction analysis.
    Yeh HH; Barannyk O; Grecov D; Oshkai P
    Comput Biol Med; 2019 Jul; 110():79-92. PubMed ID: 31129417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a bioprosthetic bicuspid venous valve hemodynamics: implications for mechanism of valve dynamics.
    Tien WH; Chen HY; Berwick ZC; Krieger J; Chambers S; Dabiri D; Kassab GS
    Eur J Vasc Endovasc Surg; 2014 Oct; 48(4):459-64. PubMed ID: 25150441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A numerical study of the hemodynamic effect of the aortic valve on coronary flow.
    Wald S; Liberzon A; Avrahami I
    Biomech Model Mechanobiol; 2018 Apr; 17(2):319-338. PubMed ID: 28929246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the Accuracy of Structural and FSI Heart Valves Simulations.
    Luraghi G; Migliavacca F; Rodriguez Matas JF
    Cardiovasc Eng Technol; 2018 Dec; 9(4):723-738. PubMed ID: 30132282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patient-specific assessment of hemodynamics by computational fluid dynamics in patients with bicuspid aortopathy.
    Kimura N; Nakamura M; Komiya K; Nishi S; Yamaguchi A; Tanaka O; Misawa Y; Adachi H; Kawahito K
    J Thorac Cardiovasc Surg; 2017 Apr; 153(4):S52-S62.e3. PubMed ID: 28190607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aortic valve leaflet wall shear stress characterization revisited: impact of coronary flow.
    Cao K; Sucosky P
    Comput Methods Biomech Biomed Engin; 2017 Apr; 20(5):468-470. PubMed ID: 27712083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of a numerical 3-D fluid-structure interaction model for a prosthetic valve based on experimental PIV measurements.
    Guivier-Curien C; Deplano V; Bertrand E
    Med Eng Phys; 2009 Oct; 31(8):986-93. PubMed ID: 19577504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Aortic Wall Deformation with Healthy and Calcified Annulus on Hemodynamic Performance of Implanted On-X Valve.
    Sadipour M; Hanafizadeh P; Sadeghy K; Sattari A
    Cardiovasc Eng Technol; 2020 Apr; 11(2):141-161. PubMed ID: 31912432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.