These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance. Untaroiu A; Throckmorton AL; Patel SM; Wood HG; Allaire PE; Olsen DB Artif Organs; 2005 Jul; 29(7):581-91. PubMed ID: 15982287 [TBL] [Abstract][Full Text] [Related]
43. Transient Performance Analysis of Centrifugal Left Ventricular Assist Devices Coupled With Windkessel Model: Large Eddy Simulations Study on Continuous and Pulsatile Flow Operation. Gil A; Navarro R; Quintero P; Mares A J Biomech Eng; 2024 Oct; 146(10):. PubMed ID: 38683061 [TBL] [Abstract][Full Text] [Related]
44. Characterization and Development of Universal Ventricular Assist Device: Computational Fluid Dynamics Analysis of Advanced Design. Goodin MS; Showalter MS; Horvath DJ; Kuban BD; Flick CR; Polakowski AR; Fukamachi K; Karimov JH ASAIO J; 2022 Aug; 68(8):1024-1035. PubMed ID: 34772847 [TBL] [Abstract][Full Text] [Related]
45. Prediction of mechanical hemolysis in medical devices via a Lagrangian strain-based multiscale model. Nikfar M; Razizadeh M; Zhang J; Paul R; Wu ZJ; Liu Y Artif Organs; 2020 Aug; 44(8):E348-E368. PubMed ID: 32017130 [TBL] [Abstract][Full Text] [Related]
46. Leakage flow rate and wall shear stress distributions in a biocentrifugal ventricular assist device. Chua LP; Ong KS; Yu CM; Zhou T ASAIO J; 2004; 50(6):530-6. PubMed ID: 15672784 [TBL] [Abstract][Full Text] [Related]
47. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms. Xiang J; Siddiqui AH; Meng H J Biomech; 2014 Dec; 47(16):3882-90. PubMed ID: 25446264 [TBL] [Abstract][Full Text] [Related]
48. Analysis of flow field and hemolysis index in axial flow blood pump by computational fluid dynamics-discrete element method. Cheng L; Tan J; Yun Z; Wang S; Yu Z Int J Artif Organs; 2021 Jan; 44(1):46-54. PubMed ID: 32393086 [TBL] [Abstract][Full Text] [Related]
49. High-frequency operation of pulsatile ventricular assist devices: A computational study on circular and elliptically shaped pumps. Loosli C; Rupp S; Thamsen B; Rebholz M; Kress G; Meboldt M; Ermanni P Int J Artif Organs; 2019 Dec; 42(12):725-734. PubMed ID: 31277562 [TBL] [Abstract][Full Text] [Related]
50. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation. Torner B; Konnigk L; Hallier S; Kumar J; Witte M; Wurm FH Int J Artif Organs; 2018 Nov; 41(11):752-763. PubMed ID: 29898615 [TBL] [Abstract][Full Text] [Related]
51. CFD Assisted Evaluation of In Vitro Experiments on Bearingless Blood Pumps. Puentener P; Schuck M; Kolar JW IEEE Trans Biomed Eng; 2021 Apr; 68(4):1370-1378. PubMed ID: 33048670 [TBL] [Abstract][Full Text] [Related]
52. [Numerical assessment of impeller features of centrifugal blood pump based on fast hemolysis approximation model]. Shou C; Guo Y; Su L; Li Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Dec; 31(6):1260-4. PubMed ID: 25868241 [TBL] [Abstract][Full Text] [Related]
53. In vitro hydrodynamic analysis of pin and cone bearing designs of the Jarvik 2000 adult ventricular assist device. Stanfield JR; Selzman CH Artif Organs; 2013 Sep; 37(9):825-33. PubMed ID: 23981178 [TBL] [Abstract][Full Text] [Related]
54. Centrifugal blood pump for temporary ventricular assist devices with low priming and ceramic bearings. Leme J; da Silva C; Fonseca J; da Silva BU; Uebelhart B; Biscegli JF; Andrade A Artif Organs; 2013 Nov; 37(11):942-5. PubMed ID: 24219168 [TBL] [Abstract][Full Text] [Related]
55. Long-term durability test of axial-flow ventricular assist device under pulsatile flow. Nishida M; Kosaka R; Maruyama O; Yamane T; Shirasu A; Tatsumi E; Taenaka Y J Artif Organs; 2017 Mar; 20(1):26-33. PubMed ID: 27815718 [TBL] [Abstract][Full Text] [Related]
56. An in silico analysis of unsteady flow structures in a microaxial blood pump under a pulsating rotation speed. Chen C; Zhang M; Hao P; He F; Zhang X Comput Methods Programs Biomed; 2024 Jan; 243():107919. PubMed ID: 37972458 [TBL] [Abstract][Full Text] [Related]
57. Numerical solution for blood flow in a centrifugal ventricular assist device. Wood HG; Anderson J; Allaire PE; McDaniel JC; Bearnson G Int J Artif Organs; 1999 Dec; 22(12):827-36. PubMed ID: 10654880 [TBL] [Abstract][Full Text] [Related]
59. Computational Fluid Dynamics (CFD) study of the 4th generation prototype of a continuous flow Ventricular Assist Device (VAD). Song X; Wood HG; Olsen D J Biomech Eng; 2004 Apr; 126(2):180-7. PubMed ID: 15179847 [TBL] [Abstract][Full Text] [Related]
60. Flow characteristics and hemolytic performance of the new Breethe centrifugal blood pump in comparison with the CentriMag and Rotaflow pumps. He G; Zhang J; Shah A; Berk ZB; Han L; Dong H; Griffith BP; Wu ZJ Int J Artif Organs; 2021 Nov; 44(11):829-837. PubMed ID: 34494469 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]