These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30406951)

  • 1. Ether-Soluble Cu
    Yuan P; Chen R; Zhang X; Chen F; Yan J; Sun C; Ou D; Peng J; Lin S; Tang Z; Teo BK; Zheng LS; Zheng N
    Angew Chem Int Ed Engl; 2019 Jan; 58(3):835-839. PubMed ID: 30406951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of Non-FCC Copper in Alkynyl-Protected Cu
    Qu M; Zhang FQ; Wang DH; Li H; Hou JJ; Zhang XM
    Angew Chem Int Ed Engl; 2020 Apr; 59(16):6507-6512. PubMed ID: 31981465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Step Physical Deposition of a Compact CuI Hole-Transport Layer and the Formation of an Interfacial Species in Perovskite Solar Cells.
    Gharibzadeh S; Nejand BA; Moshaii A; Mohammadian N; Alizadeh AH; Mohammadpour R; Ahmadi V; Alizadeh A
    ChemSusChem; 2016 Aug; 9(15):1929-37. PubMed ID: 27357330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermally Evaporated Copper Iodide Hole-Transporter for Stable CdS/CdTe Thin-Film Solar Cells.
    Thivakarasarma T; Lakmal AAI; Dassanayake BS; Velauthapillai D; Ravirajan P
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkynyl-Protected Bimetallic Nanoclusters with a Hybrid Mackay Icosahedral Ag
    Hu F; Guan ZJ; Yuan SF; Wang QM
    Chem Asian J; 2023 Oct; 18(19):e202300605. PubMed ID: 37550250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of thickness-related grain boundary migration on hole concentration and mobility of p-type transparent conducting CuI films.
    Xue R; Gao G; Yang L; Xu L; Zhang Y; Zhu J
    RSC Adv; 2024 Mar; 14(13):9072-9079. PubMed ID: 38500616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Breakthrough Efficiency of 19.9% Obtained in Inverted Perovskite Solar Cells by Using an Efficient Trap State Passivator Cu(thiourea)I.
    Ye S; Rao H; Zhao Z; Zhang L; Bao H; Sun W; Li Y; Gu F; Wang J; Liu Z; Bian Z; Huang C
    J Am Chem Soc; 2017 Jun; 139(22):7504-7512. PubMed ID: 28504518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide.
    Christians JA; Fung RC; Kamat PV
    J Am Chem Soc; 2014 Jan; 136(2):758-64. PubMed ID: 24350620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Quality Perovskite Films Grown with a Fast Solvent-Assisted Molecule Inserting Strategy for Highly Efficient and Stable Solar Cells.
    Yuan S; Qiu Z; Gao C; Zhang H; Jiang Y; Li C; Yu J; Cao B
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22238-45. PubMed ID: 27526617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room-Temperature and Solution-Processable Cu-Doped Nickel Oxide Nanoparticles for Efficient Hole-Transport Layers of Flexible Large-Area Perovskite Solar Cells.
    He Q; Yao K; Wang X; Xia X; Leng S; Li F
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41887-41897. PubMed ID: 29135219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comproportionation Synthesis of Copper(I) Alkynyl Complexes Encapsulating Polyoxomolybdate Templates: Bowl-Shaped Cu33 and Peanut-Shaped Cu62 Nanoclusters.
    Zhang LM; Mak TC
    J Am Chem Soc; 2016 Mar; 138(9):2909-12. PubMed ID: 26899875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cu/Cu
    Chen YJ; Li MH; Huang JC; Chen P
    Sci Rep; 2018 May; 8(1):7646. PubMed ID: 29769568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CH
    Zhang Y; Kim SG; Lee DK; Park NG
    ChemSusChem; 2018 Jun; 11(11):1813-1823. PubMed ID: 29740983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly transparent and conductive p-type CuI films by optimized solid-iodination at room temperature.
    Luo S; Xu J; Gong J; You R; Wang Y; Lin SS; Dai MJ; Sun H
    Nanotechnology; 2021 Dec; 33(10):. PubMed ID: 34610593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing the Universal "Coffee-Ring Effect" by a Vapor-Assisted Spraying Method for High-Efficiency CH
    Chen H; Ding X; Pan X; Hayat T; Alsaedi A; Ding Y; Dai S
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23466-23475. PubMed ID: 29969014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Zn Substitution in Improving the Electrical Properties of CuI Thin Films and Optoelectronic Performance of CuI MSM Photodetectors.
    Tsay CY; Chen YC; Tsai HM; Sittimart P; Yoshitake T
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interstitial Hydrides in Nanoclusters can Reduce M(I) (M=Cu, Ag, Au) to M(0) and Form Stable Superatoms.
    van Zyl WE; Liu CW
    Chemistry; 2022 Mar; 28(16):e202104241. PubMed ID: 34936722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deleterious Effects of Halides and Solvents used in Electronic Device Fabrication on the Integrity of Copper Iodide Thin-Films.
    Smith E; Venkataraman D
    Chempluschem; 2022 Aug; 87(8):e202200101. PubMed ID: 35793411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic Layer Deposition of TiO2 for a High-Efficiency Hole-Blocking Layer in Hole-Conductor-Free Perovskite Solar Cells Processed in Ambient Air.
    Hu H; Dong B; Hu H; Chen F; Kong M; Zhang Q; Luo T; Zhao L; Guo Z; Li J; Xu Z; Wang S; Eder D; Wan L
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):17999-8007. PubMed ID: 27340730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Transparent CuI Thin Films by a Facile Low-Cost High Pressure (HP)-PECVD Method at Room Temperature for the Application in Solar Cells.
    Sanyal Dipto A; Mondal L; Hossain J; Rashid MM; Hossain MK; Roy NC; Rashid Talukder M
    ChemistryOpen; 2023 Sep; 12(9):e202300067. PubMed ID: 37699775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.