BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 3040699)

  • 1. (Na+ + K+)-ATPase: on the number of the ATP sites of the functional unit.
    Askari A
    J Bioenerg Biomembr; 1987 Aug; 19(4):359-74. PubMed ID: 3040699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of function-related interactions of ATP, sodium and potassium ions with Na+- and K+-transporting ATPase studied with a thiol reagent as tool.
    Grosse R; Eckert K; Malur J; Repke KR
    Acta Biol Med Ger; 1978; 37(1):83-96. PubMed ID: 212908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligands presumed to label high affinity and low affinity ATP binding sites do not interact in an (alpha beta)2 diprotomer in duck nasal gland Na+,K+-ATPase, nor Do the sites coexist in native enzyme.
    Martin DW; Sachs JR
    J Biol Chem; 2000 Aug; 275(32):24512-7. PubMed ID: 10831595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncoupling of ATP binding to Na+,K+-ATPase from its stimulation of ouabain binding: studies of the inhibition of Na+,K+-ATPase by a monoclonal antibody.
    Ball WJ
    Biochemistry; 1986 Nov; 25(22):7155-62. PubMed ID: 3026448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate binding and ATP-binding sites coexist in Na+/K(+)-transporting ATPase, as demonstrated by the inactivating MgPO4 complex analogue Co(NH3)4PO4.
    Buxbaum E; Schoner W
    Eur J Biochem; 1991 Jan; 195(2):407-19. PubMed ID: 1847680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of monovalent cations to Na+,K+-dependent ATPase purified from porcine kidney. II. Acceleration of transition from a K+-bound form to a Na+-bound form by binding of ATP to a regulatory site of the enzyme.
    Yamaguchi M; Tonomura Y
    J Biochem; 1980 Nov; 88(5):1377-85. PubMed ID: 6257665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demonstration of cooperating alpha subunits in working (Na+ + K+)-ATPase by the use of the MgATP complex analogue cobalt tetrammine ATP.
    Scheiner-Bobis G; Fahlbusch K; Schoner W
    Eur J Biochem; 1987 Oct; 168(1):123-31. PubMed ID: 2822400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na+, K+-ATPase: relation of conformational transitions to function.
    Askari A
    Mol Cell Biochem; 1982 Apr; 43(3):129-43. PubMed ID: 6283332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The oligomeric nature of Na/K-transport ATPase.
    Taniguchi K; Kaya S; Abe K; Mårdh S
    J Biochem; 2001 Mar; 129(3):335-42. PubMed ID: 11226871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Regulation of the number of k-binding sites of Na,K-ATPase by adenosine triphosphate].
    Kikvidze ZIa; Vekua MG; Kometiani ZP
    Biokhimiia; 1983 Jul; 48(7):1074-9. PubMed ID: 6311290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-acetylimidazole inactivates renal Na,K-ATPase by disrupting ATP binding to the catalytic site.
    Argüello JM; Kaplan JH
    Biochemistry; 1990 Jun; 29(24):5775-82. PubMed ID: 2166561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical modelling of ATP, K+ and Na+ interactions with (Na+ + K+)-ATPase occurring under equilibrium conditions.
    Grosse R; Rapoport T; Malur J; Fischer J; Repke KR
    Biochim Biophys Acta; 1979 Feb; 550(3):500-14. PubMed ID: 217431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of phosphoryl transfer mechanism and catalytic centre geometries of transport ATPase by means of spin-labelled ATP.
    Streckenbach B; Schwarz D; Repke KR
    Biochim Biophys Acta; 1980 Sep; 601(1):34-46. PubMed ID: 6250610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consequences of mutations to the phosphorylation site of the alpha-subunit of Na, K-ATPase for ATP binding and E1-E2 conformational equilibrium.
    Pedersen PA; Rasmussen JH; Jørgensen PL
    Biochemistry; 1996 Dec; 35(50):16085-93. PubMed ID: 8973179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+,K+-ATPase: structure, mechanism, and regulation.
    Lopina OD
    Membr Cell Biol; 2000; 13(6):721-44. PubMed ID: 10963432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [New method for the study of the cation center of the Na,K-ATPase system].
    Kometiani ZP; Vekua MG
    Biokhimiia; 1983 Jun; 48(6):1025-30. PubMed ID: 6309255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of the E1ATP binding site of Na+/K(+)-ATPase by the chromium complex of adenosine 5'-[beta,gamma-methylene]triphosphate blocks the overall reaction but not the partial activities of the E2 conformation.
    Hamer E; Schoner W
    Eur J Biochem; 1993 Apr; 213(2):743-8. PubMed ID: 8386635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid peroxidation as the mechanism of modification of the affinity of the Na+, K+-ATPase active sites for ATP, K+, Na+, and strophanthidin in vitro.
    Mishra OP; Delivoria-Papadopoulos M; Cahillane G; Wagerle LC
    Neurochem Res; 1989 Sep; 14(9):845-51. PubMed ID: 2556651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dynamics of the cell membrane coupling of the reaction of the Na, K-ATPase with ATP to the reaction with the cations.
    Skou JC
    Tokai J Exp Clin Med; 1982; 7 Suppl():1-6. PubMed ID: 6310820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the theory of enzyme subunit interactions to ATP-hydrolyzing enzymes. The case of Na,K-ATPase.
    Plesner IW
    Biophys J; 1987 Jan; 51(1):69-78. PubMed ID: 3026505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.