These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30406999)

  • 1. Strain Engineering in Highly Wrinkled CVD Graphene/Epoxy Systems.
    Anagnostopoulos G; Paterakis G; Polyzos I; Pappas PN; Kouroupis-Agalou K; Mirotta N; Scidà A; Palermo V; Parthenios J; Papagelis K; Galiotis C
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43192-43202. PubMed ID: 30406999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deformation of wrinkled graphene.
    Li Z; Kinloch IA; Young RJ; Novoselov KS; Anagnostopoulos G; Parthenios J; Galiotis C; Papagelis K; Lu CY; Britnell L
    ACS Nano; 2015 Apr; 9(4):3917-25. PubMed ID: 25765609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene-Based Materials as Strain Sensors in Glass Fiber/Epoxy Model Composites.
    Chu J; Marsden AJ; Young RJ; Bissett MA
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31338-31345. PubMed ID: 31381289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polycrystallinity and stacking in CVD graphene.
    Tsen AW; Brown L; Havener RW; Park J
    Acc Chem Res; 2013 Oct; 46(10):2286-96. PubMed ID: 23135386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic Friction of Wrinkled Graphene Grown by Chemical Vapor Deposition.
    Long F; Yasaei P; Yao W; Salehi-Khojin A; Shahbazian-Yassar R
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20922-20927. PubMed ID: 28513130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wrinkled Few-Layer Graphene as Highly Efficient Load Bearer.
    Androulidakis C; Koukaras EN; Rahova J; Sampathkumar K; Parthenios J; Papagelis K; Frank O; Galiotis C
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26593-26601. PubMed ID: 28722403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional Graphene Foam Induces Multifunctionality in Epoxy Nanocomposites by Simultaneous Improvement in Mechanical, Thermal, and Electrical Properties.
    Embrey L; Nautiyal P; Loganathan A; Idowu A; Boesl B; Agarwal A
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39717-39727. PubMed ID: 29068220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How good can CVD-grown monolayer graphene be?
    Chen B; Huang H; Ma X; Huang L; Zhang Z; Peng LM
    Nanoscale; 2014 Dec; 6(24):15255-61. PubMed ID: 25381813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping.
    Chen S; Li Q; Zhang Q; Qu Y; Ji H; Ruoff RS; Cai W
    Nanotechnology; 2012 Sep; 23(36):365701. PubMed ID: 22910228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AFM and Raman study of graphene deposited on silicon surfaces nanostructured by ion beam irradiation.
    Dell'anna R; Iacob E; Tripathi M; Dalton A; BÖttger R; Pepponi G
    J Microsc; 2020 Dec; 280(3):183-193. PubMed ID: 32424808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controllable Fabrication of Large-Area Wrinkled Graphene on a Solution Surface.
    Chen W; Gui X; Liang B; Liu M; Lin Z; Zhu Y; Tang Z
    ACS Appl Mater Interfaces; 2016 May; 8(17):10977-84. PubMed ID: 27111911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman spectroscopy and in situ Raman spectroelectrochemistry of isotopically engineered graphene systems.
    Frank O; Dresselhaus MS; Kalbac M
    Acc Chem Res; 2015 Jan; 48(1):111-8. PubMed ID: 25569178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Exfoliation of Graphene in Epoxy Resins: A Facile Strategy to Efficient and Large Scale Graphene Nanocomposites.
    Li Y; Zhang H; Crespo M; Porwal H; Picot O; Santagiuliana G; Huang Z; Barbieri E; Pugno NM; Peijs T; Bilotti E
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):24112-22. PubMed ID: 27541488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-Physical Characterization of Chemical Vapor Deposition-Grown Monolayer Graphene for High Performance Electrode: Raman, Surface-Enhanced Raman Spectroscopy, and Electrostatic Force Microscopy Studies.
    Park WH
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer of CVD-grown monolayer graphene onto arbitrary substrates.
    Suk JW; Kitt A; Magnuson CW; Hao Y; Ahmed S; An J; Swan AK; Goldberg BB; Ruoff RS
    ACS Nano; 2011 Sep; 5(9):6916-24. PubMed ID: 21894965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale investigation of charge transport at the grain boundaries and wrinkles in graphene film.
    Ahmad M; An H; Kim YS; Lee JH; Jung J; Chun SH; Seo Y
    Nanotechnology; 2012 Jul; 23(28):285705. PubMed ID: 22728533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical vapor deposition of graphene single crystals.
    Yan Z; Peng Z; Tour JM
    Acc Chem Res; 2014 Apr; 47(4):1327-37. PubMed ID: 24527957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman spectroscopic investigation of polycrystalline structures of CVD-grown graphene by isotope labeling.
    Wang S; Suzuki S; Hibino H
    Nanoscale; 2014 Nov; 6(22):13838-44. PubMed ID: 25303722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-periodic nanoripples in graphene grown by chemical vapor deposition and its impact on charge transport.
    Ni GX; Zheng Y; Bae S; Kim HR; Pachoud A; Kim YS; Tan CL; Im D; Ahn JH; Hong BH; Ozyilmaz B
    ACS Nano; 2012 Feb; 6(2):1158-64. PubMed ID: 22251076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wrinkle-induced highly conductive channels in graphene on SiO
    Ma RS; Ma J; Yan J; Wu L; Guo W; Wang S; Huan Q; Bao L; Pantelides ST; Gao HJ
    Nanoscale; 2020 Jun; 12(22):12038-12045. PubMed ID: 32469037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.