These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 30407398)

  • 1. A Review of Biomedical Centrifugal Microfluidic Platforms.
    Tang M; Wang G; Kong SK; Ho HP
    Micromachines (Basel); 2016 Feb; 7(2):. PubMed ID: 30407398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Centrifugal microfluidic platforms: advanced unit operations and applications.
    Strohmeier O; Keller M; Schwemmer F; Zehnle S; Mark D; von Stetten F; Zengerle R; Paust N
    Chem Soc Rev; 2015 Oct; 44(17):6187-229. PubMed ID: 26035697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Centrifugal microfluidics for biomedical applications.
    Gorkin R; Park J; Siegrist J; Amasia M; Lee BS; Park JM; Kim J; Kim H; Madou M; Cho YK
    Lab Chip; 2010 Jul; 10(14):1758-73. PubMed ID: 20512178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lab-on-a-Disc for Point-of-Care Infection Diagnostics.
    Sunkara V; Kumar S; Sabaté Del Río J; Kim I; Cho YK
    Acc Chem Res; 2021 Oct; 54(19):3643-3655. PubMed ID: 34516092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optically-controlled closable microvalves for polymeric centrifugal microfluidic devices.
    Woolf MS; Dignan LM; Lewis HM; Tomley CJ; Nauman AQ; Landers JP
    Lab Chip; 2020 Apr; 20(8):1426-1440. PubMed ID: 32201873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binary centrifugal microfluidics enabling novel, digital addressable functions for valving and routing.
    Wang G; Tan J; Tang M; Zhang C; Zhang D; Ji W; Chen J; Ho HP; Zhang X
    Lab Chip; 2018 Mar; ():. PubMed ID: 29546267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic platforms for lab-on-a-chip applications.
    Haeberle S; Zengerle R
    Lab Chip; 2007 Sep; 7(9):1094-110. PubMed ID: 17713606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microvalves for Applications in Centrifugal Microfluidics.
    Peshin S; Madou M; Kulinsky L
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active pneumatic control of centrifugal microfluidic flows for lab-on-a-chip applications.
    Clime L; Brassard D; Geissler M; Veres T
    Lab Chip; 2015 Jun; 15(11):2400-11. PubMed ID: 25860103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleic acid diagnostics on the total integrated lab-on-a-disc for point-of-care testing.
    Nguyen HV; Nguyen VD; Nguyen HQ; Chau THT; Lee EY; Seo TS
    Biosens Bioelectron; 2019 Sep; 141():111466. PubMed ID: 31254863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges in the Use of Compact Disc-Based Centrifugal Microfluidics for Healthcare Diagnostics at the Extreme Point of Care.
    Gilmore J; Islam M; Martinez-Duarte R
    Micromachines (Basel); 2016 Mar; 7(4):. PubMed ID: 30407426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review on pneumatic operations in centrifugal microfluidics.
    Hess JF; Zehnle S; Juelg P; Hutzenlaub T; Zengerle R; Paust N
    Lab Chip; 2019 Nov; 19(22):3745-3770. PubMed ID: 31596297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Event-triggered logical flow control for comprehensive process integration of multi-step assays on centrifugal microfluidic platforms.
    Kinahan DJ; Kearney SM; Dimov N; Glynn MT; Ducrée J
    Lab Chip; 2014 Jul; 14(13):2249-58. PubMed ID: 24811251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated solid phase DNA extraction on a lab-on-a-disc with two-degrees of freedom instrumentation.
    Carthy É; Hughes B; Higgins E; Early P; Merne C; Walsh D; Parle-McDermott A; Kinahan DJ
    Anal Chim Acta; 2023 Nov; 1280():341859. PubMed ID: 37858565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection methods for centrifugal microfluidic platforms.
    Burger R; Amato L; Boisen A
    Biosens Bioelectron; 2016 Feb; 76():54-67. PubMed ID: 26166363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidics for COVID-19: From Current Work to Future Perspective.
    Li Q; Zhou X; Wang Q; Liu W; Chen C
    Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary Flow-Driven and Magnetically Actuated Multi-Use Wax Valves for Controlled Sealing and Releasing of Fluids on Centrifugal Microfluidic Platforms.
    Peshin S; George D; Shiri R; Kulinsky L; Madou M
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD-Based Microfluidics for Primary Care in Extreme Point-of-Care Settings.
    Smith S; Mager D; Perebikovsky A; Shamloo E; Kinahan D; Mishra R; Torres Delgado SM; Kido H; Saha S; Ducrée J; Madou M; Land K; Korvink JG
    Micromachines (Basel); 2016 Jan; 7(2):. PubMed ID: 30407395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.