These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 30407419)

  • 21. Optofluidic bioanalysis: fundamentals and applications.
    Ozcelik D; Cai H; Leake KD; Hawkins AR; Schmidt H
    Nanophotonics; 2017 Jul; 6(4):647-661. PubMed ID: 29201591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design, fabrication, and characterization of Si-based ARROW photonic crystal bend waveguides and power splitters.
    Chen JH; Huang YT; Yang YL; Lu MF; Shieh JM
    Appl Opt; 2012 Aug; 51(24):5876-84. PubMed ID: 22907016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual-core optofluidic chip for independent particle detection and tunable spectral filtering.
    Ozcelik D; Phillips BS; Parks JW; Measor P; Gulbransen D; Hawkins AR; Schmidt H
    Lab Chip; 2012 Oct; 12(19):3728-33. PubMed ID: 22864667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and characterization of an integrated silicon micro flow cytometer.
    Bernini R; De Nuccio E; Brescia F; Minardo A; Zeni L; Sarro PM; Palumbo R; Scarfi MR
    Anal Bioanal Chem; 2006 Nov; 386(5):1267-72. PubMed ID: 16841207
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescent liquid-core/air-cladding waveguides towards integrated optofluidic light sources.
    Lim JM; Kim SH; Choi JH; Yang SM
    Lab Chip; 2008 Sep; 8(9):1580-5. PubMed ID: 18818816
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Greatly Enhanced Single Particle Fluorescence Detection Using High Refractive Index Liquid-Core Waveguides.
    Meena GG; Wright JG; Hawkins AR; Schmidt H
    IEEE J Sel Top Quantum Electron; 2021; 27(5):. PubMed ID: 33994767
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual-optofluidic waveguide in-line fiber biosensor for real-time label-free detection of interferon-gamma with temperature compensation.
    Gao R; Lu D; Guo D; Xin X
    Opt Express; 2020 Mar; 28(7):10491-10504. PubMed ID: 32225632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Waveguide loss optimization in hollow-core ARROW waveguides.
    Yin D; Barber J; Hawkins A; Schmidt H
    Opt Express; 2005 Nov; 13(23):9331-6. PubMed ID: 19503133
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A hybrid silicon-PDMS optofluidic platform for sensing applications.
    Testa G; Persichetti G; Sarro PM; Bernini R
    Biomed Opt Express; 2014 Feb; 5(2):417-26. PubMed ID: 24575337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconfigurable Integrated Optofluidic Droplet Laser Arrays.
    Zhang H; Palit P; Liu Y; Vaziri S; Sun Y
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):26936-26942. PubMed ID: 32437123
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides.
    Fei P; Chen Z; Men Y; Li A; Shen Y; Huang Y
    Lab Chip; 2012 Oct; 12(19):3700-6. PubMed ID: 22699406
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optofluidic Flow-Through Biosensor Sensitivity - Model and Experiment.
    Wright JG; Amin MN; Meena GG; Schmidt H; Hawkins AR
    J Lightwave Technol; 2021 May; 39(10):3330-3340. PubMed ID: 34177078
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optofluidic approaches for enhanced microsensor performances.
    Testa G; Persichetti G; Bernini R
    Sensors (Basel); 2014 Dec; 15(1):465-84. PubMed ID: 25558989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical microtube cavities monolithically integrated on photonic chips for optofluidic sensing.
    Madani A; Harazim SM; Bolaños Quiñones VA; Kleinert M; Finn A; Ghareh Naz ES; Ma L; Schmidt OG
    Opt Lett; 2017 Feb; 42(3):486-489. PubMed ID: 28146508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optofluidic Waveguides in Teflon AF-Coated PDMS Microfluidic Channels.
    Cho SH; Godin J; Lo YH
    IEEE Photonics Technol Lett; 2009 Aug; 21(15):1057-1059. PubMed ID: 20729984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Laser-written photonic crystal optofluidics for electrochromatography and spectroscopy on a chip.
    Haque M; Zacharia NS; Ho S; Herman PR
    Biomed Opt Express; 2013; 4(8):1472-85. PubMed ID: 24010009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Optofluidic Light Cage - On-Chip Integrated Spectroscopy Using an Antiresonance Hollow Core Waveguide.
    Kim J; Jang B; Gargiulo J; Bürger J; Zhao J; Upendar S; Weiss T; Maier SA; Schmidt MA
    Anal Chem; 2021 Jan; 93(2):752-760. PubMed ID: 33296184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical-assisted femtosecond laser writing of lab-in-fibers.
    Haque M; Lee KK; Ho S; Fernandes LA; Herman PR
    Lab Chip; 2014 Oct; 14(19):3817-29. PubMed ID: 25120138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical characterization of arch-shaped ARROW waveguides with liquid cores.
    Yin D; Schmidt H; Barber JP; Lunt EJ; Hawkins AR
    Opt Express; 2005 Dec; 13(26):10564-70. PubMed ID: 19503271
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microphotonic control of single molecule fluorescence correlation spectroscopy using planar optofluidics.
    Yin D; Lunt EJ; Barman A; Hawkins AR; Schmidt H
    Opt Express; 2007 Jun; 15(12):7290-5. PubMed ID: 19547052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.