These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30407427)

  • 1. Surface Tension Directed Fluidic Self-Assembly of Semiconductor Chips across Length Scales and Material Boundaries.
    Biswas S; Mozafari M; Stauden T; Jacobs HO
    Micromachines (Basel); 2016 Mar; 7(4):. PubMed ID: 30407427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Core-Shell Transformation-Imprinted Solder Bumps Enabling Low-Temperature Fluidic Self-Assembly and Self-Alignment of Chips and High Melting Point Interconnects.
    Kaltwasser M; Schmidt U; Biswas S; Reiprich J; Schlag L; Isaac NA; Stauden T; Jacobs HO
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40608-40613. PubMed ID: 30433752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A first implementation of an automated reel-to-reel fluidic self-assembly machine.
    Park SC; Fang J; Biswas S; Mozafari M; Stauden T; Jacobs HO
    Adv Mater; 2014 Sep; 26(34):5942-9. PubMed ID: 24975472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Millimeter Thin and Rubber-Like Solid-State Lighting Modules Fabricated Using Roll-to-Roll Fluidic Self-Assembly and Lamination.
    Park SC; Biswas S; Fang J; Mozafari M; Stauden T; Jacobs HO
    Adv Mater; 2015 Jun; 27(24):3661-8. PubMed ID: 25966304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluidic Self-Assembly on Electroplated Multilayer Solder Bumps with Tailored Transformation Imprinted Melting Points.
    Kaltwasser M; Schmidt U; Lösing L; Biswas S; Stauden T; Bund A; Jacobs HO
    Sci Rep; 2019 Aug; 9(1):11325. PubMed ID: 31383873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of microscopic chiplets at a liquid-liquid-solid interface forming a flexible segmented monocrystalline solar cell.
    Knuesel RJ; Jacobs HO
    Proc Natl Acad Sci U S A; 2010 Jan; 107(3):993-8. PubMed ID: 20080682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential shape-and-solder-directed self-assembly of functional microsystems.
    Zheng W; Buhlmann P; Jacobs HO
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12814-7. PubMed ID: 15317938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controllable Fabrication of Graphene and Related Two-Dimensional Materials on Liquid Metals via Chemical Vapor Deposition.
    Zeng M; Fu L
    Acc Chem Res; 2018 Nov; 51(11):2839-2847. PubMed ID: 30222313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Massively parallel low-cost pick-and-place of optoelectronic devices by electrochemical fluidic processing.
    Ozkan M; Kibar O; Ozkan CS; Esener SC
    Opt Lett; 2000 Sep; 25(17):1285-7. PubMed ID: 18066194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Printable Functional Chips Based on Nanoparticle Assembly.
    Huang Y; Li W; Qin M; Zhou H; Zhang X; Li F; Song Y
    Small; 2017 Jan; 13(4):. PubMed ID: 28102576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guided and fluidic self-assembly of microstructures using railed microfluidic channels.
    Chung SE; Park W; Shin S; Lee SA; Kwon S
    Nat Mater; 2008 Jul; 7(7):581-7. PubMed ID: 18552850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Rate Assembly of Nanomaterials on Insulating Surfaces Using Electro-Fluidic Directed Assembly.
    Yilmaz C; Sirman A; Halder A; Busnaina A
    ACS Nano; 2017 Aug; 11(8):7679-7689. PubMed ID: 28696094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanowire Electronics: From Nanoscale to Macroscale.
    Jia C; Lin Z; Huang Y; Duan X
    Chem Rev; 2019 Aug; 119(15):9074-9135. PubMed ID: 31361471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skin-Inspired Electronics: An Emerging Paradigm.
    Wang S; Oh JY; Xu J; Tran H; Bao Z
    Acc Chem Res; 2018 May; 51(5):1033-1045. PubMed ID: 29693379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly from milli- to nanoscales: methods and applications.
    Mastrangeli M; Abbasi S; Varel C; Van Hoof C; Celis JP; Böhringer KF
    J Micromech Microeng; 2009 Jul; 19(8):83001. PubMed ID: 20209016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free-space parallel multichip interconnection system.
    Zheng X; Marchand PJ; Huang D; Esener SC
    Appl Opt; 2000 Jul; 39(20):3516-24. PubMed ID: 18349922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface self-assembly of colloidal crystals for micro- and nano-patterning.
    van Dommelen R; Fanzio P; Sasso L
    Adv Colloid Interface Sci; 2018 Jan; 251():97-114. PubMed ID: 29174673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward three-dimensional microelectronic systems: directed self-assembly of silicon microcubes via DNA surface functionalization.
    Lämmerhardt N; Merzsch S; Ledig J; Bora A; Waag A; Tornow M; Mischnick P
    Langmuir; 2013 Jul; 29(26):8410-6. PubMed ID: 23786592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solder-based chip-to-tube and chip-to-chip packaging for microfluidic devices.
    Murphy ER; Inoue T; Sahoo HR; Zaborenko N; Jensen KF
    Lab Chip; 2007 Oct; 7(10):1309-14. PubMed ID: 17896015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.