BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 30407430)

  • 1. Resonant Varifocal Micromirror with Piezoresistive Focus Sensor.
    Nakazawa K; Sasaki T; Furuta H; Kamiya J; Sasaki H; Kamiya T; Hane K
    Micromachines (Basel); 2016 Mar; 7(4):. PubMed ID: 30407430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confocal laser displacement sensor using a micro-machined varifocal mirror.
    Nakazawa K; Sasaki T; Furuta H; Kamiya J; Sasaki H; Kamiya T; Hane K
    Appl Opt; 2017 Aug; 56(24):6911-6916. PubMed ID: 29048034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An SOI-Structured Piezoresistive Differential Pressure Sensor with High Performance.
    Xu Z; Yan J; Ji M; Zhou Y; Wang D; Wang Y; Mai Z; Zhao X; Nan T; Xing G; Zhang S
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FR4-Based Electromagnetic Scanning Micromirror Integrated with Angle Sensor.
    Lei H; Wen Q; Yu F; Zhou Y; Wen Z
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MEMS-on-fiber ultrasonic sensor with two resonant frequencies for partial discharges detection.
    Li H; Lv J; Li D; Xiong C; Zhang Y; Yu Y
    Opt Express; 2020 Jun; 28(12):18431-18439. PubMed ID: 32680041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MEMS based Low Cost Piezoresistive Microcantilever Force Sensor and Sensor Module.
    Pandya HJ; Kim HT; Roy R; Desai JP
    Mater Sci Semicond Process; 2014 Mar; 19():163-173. PubMed ID: 24855449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability.
    Morrison J; Imboden M; Little TD; Bishop DJ
    Opt Express; 2015 Apr; 23(7):9555-66. PubMed ID: 25968784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Piezoresistive MEMS Pressure Sensors Based on Temporary Bonding Technology.
    Song P; Si C; Zhang M; Zhao Y; He Y; Liu W; Wang X
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Piezoresistive Pressure Sensor with Optimized Positions and Thickness of Piezoresistors.
    Meng Q; Lu Y; Wang J; Chen D; Chen J
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel resonant pressure sensor based on piezoresistive detection and symmetrical in-plane mode vibration.
    Han X; Mao Q; Zhao L; Li X; Wang L; Yang P; Lu D; Wang Y; Yan X; Wang S; Zhu N; Jiang Z
    Microsyst Nanoeng; 2020; 6():95. PubMed ID: 34567705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging.
    Luo Z; Chen D; Wang J; Li Y; Chen J
    Sensors (Basel); 2014 Dec; 14(12):24244-57. PubMed ID: 25521385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beam shaping with tip-tilt varifocal mirror for indoor optical wireless communication.
    Pollock C; Morrison J; Imboden M; Little TDC; Bishop DJ
    Opt Express; 2017 Aug; 25(17):20274-20285. PubMed ID: 29041710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Application of a High-G Piezoresistive Acceleration Sensor for High-Impact Application.
    Hu X; Mackowiak P; Bäuscher M; Ehrmann O; Lang KD; Schneider-Ramelow M; Linke S; Ngo HD
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scanning Micro-Mirror with an Electrostatic Spring for Compensation of Hard-Spring Nonlinearity.
    Izawa T; Sasaki T; Hane K
    Micromachines (Basel); 2017 Aug; 8(8):. PubMed ID: 30400431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 2-D MEMS scanning mirror based on dynamic mixed mode excitation of a piezoelectric PZT thin film S-shaped actuator.
    Koh KH; Kobayashi T; Lee C
    Opt Express; 2011 Jul; 19(15):13812-24. PubMed ID: 21934742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Silicon Optical Bench-Based Forward-View Two-Axis Scanner for Microendoscopy Applications.
    Zheng D; Wang D; Yoon YK; Xie H
    Micromachines (Basel); 2020 Nov; 11(12):. PubMed ID: 33260524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency characteristics of an ultrasonic varifocal liquid crystal lens.
    Kuroda Y; Harada Y; Emoto A; Matsukawa M; Koyama D
    Appl Opt; 2024 Mar; 63(9):2256-2262. PubMed ID: 38568580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and Characteristics of a SOI Three-Axis Acceleration Sensor Based on MEMS Technology.
    Zhao X; Wang Y; Wen D
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 30970643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laterally Driven Resonant Pressure Sensor with Etched Silicon Dual Diaphragms and Combined Beams.
    Du X; Liu Y; Li A; Zhou Z; Sun D; Wang L
    Sensors (Basel); 2016 Jan; 16(2):158. PubMed ID: 26821031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Realization of Three-Dimensionally MEMS Stacked Comb Structures for Microactuators Using Low-Temperature Multi-Wafer Bonding with Self-Alignment Techniques in CMOS-Compatible Processes.
    Teo AJT; Li KHH
    Micromachines (Basel); 2021 Nov; 12(12):. PubMed ID: 34945331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.