These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30407509)

  • 1. Revealing of a novel xylose-binding site of Geobacillus stearothermophilus xylanase by directed evolution.
    Hegazy UM; El-Khonezy MI; Shokeer A; Abdel-Ghany SS; Bassuny RI; Barakat AZ; Salama WH; Azouz RAM; Fahmy AS
    J Biochem; 2019 Feb; 165(2):177-184. PubMed ID: 30407509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis.
    Zhang ZG; Yi ZL; Pei XQ; Wu ZL
    Bioresour Technol; 2010 Dec; 101(23):9272-8. PubMed ID: 20691586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the catalytic efficiency of thermostable Geobacillus stearothermophilus xylanase XT6 by single-amino acid substitution.
    Azouz RAM; Hegazy UM; Said MM; Bassuiny RI; Salem AM; Fahmy AS
    J Biochem; 2020 Feb; 167(2):203-215. PubMed ID: 31617574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving catalytic efficiency of endo-β-1, 4-xylanase from Geobacillus stearothermophilus by directed evolution and H179 saturation mutagenesis.
    Wang Y; Feng S; Zhan T; Huang Z; Wu G; Liu Z
    J Biotechnol; 2013 Dec; 168(4):341-7. PubMed ID: 24157442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying critical unrecognized sugar-protein interactions in GH10 xylanases from Geobacillus stearothermophilus using STD NMR.
    Balazs YS; Lisitsin E; Carmiel O; Shoham G; Shoham Y; Schmidt A
    FEBS J; 2013 Sep; 280(18):4652-65. PubMed ID: 23863045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure determination of the extracellular xylanase from Geobacillus stearothermophilus by selenomethionyl MAD phasing.
    Teplitsky A; Mechaly A; Stojanoff V; Sainz G; Golan G; Feinberg H; Gilboa R; Reiland V; Zolotnitsky G; Shallom D; Thompson A; Shoham Y; Shoham G
    Acta Crystallogr D Biol Crystallogr; 2004 May; 60(Pt 5):836-48. PubMed ID: 15103129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure of an inverting GH43 beta-xylosidase from Geobacillus stearothermophilus with its substrate reveals the role of the three catalytic residues.
    Brüx C; Ben-David A; Shallom-Shezifi D; Leon M; Niefind K; Shoham G; Shoham Y; Schomburg D
    J Mol Biol; 2006 May; 359(1):97-109. PubMed ID: 16631196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concommitant adaptation of a GH11 xylanase by directed evolution to create an alkali-tolerant/thermophilic enzyme.
    Ruller R; Alponti J; Deliberto LA; Zanphorlin LM; Machado CB; Ward RJ
    Protein Eng Des Sel; 2014 Aug; 27(8):255-62. PubMed ID: 25096197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray crystallographic studies of family 11 xylanase Michaelis and product complexes: implications for the catalytic mechanism.
    Wan Q; Zhang Q; Hamilton-Brehm S; Weiss K; Mustyakimov M; Coates L; Langan P; Graham D; Kovalevsky A
    Acta Crystallogr D Biol Crystallogr; 2014 Jan; 70(Pt 1):11-23. PubMed ID: 24419374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping glycoside hydrolase substrate subsites by isothermal titration calorimetry.
    Zolotnitsky G; Cogan U; Adir N; Solomon V; Shoham G; Shoham Y
    Proc Natl Acad Sci U S A; 2004 Aug; 101(31):11275-80. PubMed ID: 15277671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the roles of non-catalytic residues in the active site of a GH10 xylanase with activity on cellulose.
    Chu Y; Tu T; Penttinen L; Xue X; Wang X; Yi Z; Gong L; Rouvinen J; Luo H; Hakulinen N; Yao B; Su X
    J Biol Chem; 2017 Nov; 292(47):19315-19327. PubMed ID: 28974575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic hydrolysis of xylan using novel xylanases, β-xylosidases, and an α-L-arabinofuranosidase from Geobacillus thermodenitrificans NG80-2.
    Huang D; Liu J; Qi Y; Yang K; Xu Y; Feng L
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):6023-6037. PubMed ID: 28616644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two xylose-tolerant GH43 bifunctional β-xylosidase/α-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan.
    Yang X; Shi P; Huang H; Luo H; Wang Y; Zhang W; Yao B
    Food Chem; 2014 Apr; 148():381-7. PubMed ID: 24262572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial exo-xylanases: a mini review.
    Juturu V; Wu JC
    Appl Biochem Biotechnol; 2014 Sep; 174(1):81-92. PubMed ID: 25080375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of thermostability and activity of Trichoderma reesei endo-xylanase Xyn III on insoluble substrates.
    Matsuzawa T; Kaneko S; Yaoi K
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8043-51. PubMed ID: 27138202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic mining of Geobacillus stearothermophilus GF16 for xylose production from hemicellulose-rich biomasses using secreted enzymes.
    Carbonaro M; Aulitto M; Mazurkewich S; Fraia AD; Contursi P; Limauro D; Larsbrink J; Fiorentino G
    N Biotechnol; 2024 Sep; 82():14-24. PubMed ID: 38688408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paenibacillus curdlanolyticus B-6 xylanase Xyn10C capable of producing a doubly arabinose-substituted xylose, α-L-Araf-(1→2)-[α-L-Araf-(1→3)]-D-Xylp, from rye arabinoxylan.
    Imjongjairak S; Jommuengbout P; Karpilanondh P; Katsuzaki H; Sakka M; Kimura T; Pason P; Tachaapaikoon C; Romsaiyud J; Ratanakhanokchai K; Sakka K
    Enzyme Microb Technol; 2015 May; 72():1-9. PubMed ID: 25837501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of product inhibition by arabinose and xylose of the thermostable GH43 β-1,4-xylosidase from Geobacillus thermoleovorans IT-08.
    Rohman A; van Oosterwijk N; Puspaningsih NNT; Dijkstra BW
    PLoS One; 2018; 13(4):e0196358. PubMed ID: 29698436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bimodal substrate binding in the active site of the glycosidase BcX.
    Saberi M; Chikunova A; Ben Bdira F; Cramer-Blok A; Timmer M; Voskamp P; Ubbink M
    FEBS J; 2024 Oct; 291(19):4222-4239. PubMed ID: 39185686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-function relationships in Gan42B, an intracellular GH42 β-galactosidase from Geobacillus stearothermophilus.
    Solomon HV; Tabachnikov O; Lansky S; Salama R; Feinberg H; Shoham Y; Shoham G
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2433-48. PubMed ID: 26627651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.