These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30407584)

  • 1. An adaptive geometric search algorithm for macromolecular scaffold selection.
    Jiang T; Renfrew PD; Drew K; Youngs N; Butterfoss GL; Bonneau R; Shasha DN
    Protein Eng Des Sel; 2018 Sep; 31(9):345-354. PubMed ID: 30407584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fast loop-closure algorithm to accelerate residue matching in computational enzyme design.
    Xue J; Huang X; Lin M; Zhu Y
    J Mol Model; 2016 Feb; 22(2):49. PubMed ID: 26825974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of an Improved Matching Algorithm to Select Scaffolds for Enzyme Design Based on a Complex Active Site Model.
    Huang X; Xue J; Lin M; Zhu Y
    PLoS One; 2016; 11(5):e0156559. PubMed ID: 27243223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SABER: a computational method for identifying active sites for new reactions.
    Nosrati GR; Houk KN
    Protein Sci; 2012 May; 21(5):697-706. PubMed ID: 22492397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Protein Design Through Grafting and Stabilization.
    Zhu C; Mowrey DD; Dokholyan NV
    Methods Mol Biol; 2017; 1529():227-241. PubMed ID: 27914054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated scaffold selection for enzyme design.
    Malisi C; Kohlbacher O; Höcker B
    Proteins; 2009 Oct; 77(1):74-83. PubMed ID: 19408301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A matching algorithm for catalytic residue site selection in computational enzyme design.
    Lei Y; Luo W; Zhu Y
    Protein Sci; 2011 Sep; 20(9):1566-75. PubMed ID: 21714026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational design of high-affinity epitope scaffolds by backbone grafting of a linear epitope.
    Azoitei ML; Ban YE; Julien JP; Bryson S; Schroeter A; Kalyuzhniy O; Porter JR; Adachi Y; Baker D; Pai EF; Schief WR
    J Mol Biol; 2012 Jan; 415(1):175-92. PubMed ID: 22061265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational de novo design of a four-helix bundle protein--DND_4HB.
    Murphy GS; Sathyamoorthy B; Der BS; Machius MC; Pulavarti SV; Szyperski T; Kuhlman B
    Protein Sci; 2015 Apr; 24(4):434-45. PubMed ID: 25287625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of designed and randomly generated catalysts for simple chemical reactions.
    Kipnis Y; Baker D
    Protein Sci; 2012 Sep; 21(9):1388-95. PubMed ID: 22811380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GASS-Metal: identifying metal-binding sites on protein structures using genetic algorithms.
    Paiva VA; Mendonça MV; Silveira SA; Ascher DB; Pires DEV; Izidoro SC
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35595534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmarking a computational design method for the incorporation of metal ion-binding sites at symmetric protein interfaces.
    Hansen WA; Khare SD
    Protein Sci; 2017 Aug; 26(8):1584-1594. PubMed ID: 28513090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational design of a protein-based enzyme inhibitor.
    Procko E; Hedman R; Hamilton K; Seetharaman J; Fleishman SJ; Su M; Aramini J; Kornhaber G; Hunt JF; Tong L; Montelione GT; Baker D
    J Mol Biol; 2013 Sep; 425(18):3563-75. PubMed ID: 23827138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New computational protein design methods for de novo small molecule binding sites.
    Lucas JE; Kortemme T
    PLoS Comput Biol; 2020 Oct; 16(10):e1008178. PubMed ID: 33017412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New algorithms and an in silico benchmark for computational enzyme design.
    Zanghellini A; Jiang L; Wollacott AM; Cheng G; Meiler J; Althoff EA; Röthlisberger D; Baker D
    Protein Sci; 2006 Dec; 15(12):2785-94. PubMed ID: 17132862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OptGraft: A computational procedure for transferring a binding site onto an existing protein scaffold.
    Fazelinia H; Cirino PC; Maranas CD
    Protein Sci; 2009 Jan; 18(1):180-95. PubMed ID: 19177362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rosetta FunFolDes - A general framework for the computational design of functional proteins.
    Bonet J; Wehrle S; Schriever K; Yang C; Billet A; Sesterhenn F; Scheck A; Sverrisson F; Veselkova B; Vollers S; Lourman R; Villard M; Rosset S; Krey T; Correia BE
    PLoS Comput Biol; 2018 Nov; 14(11):e1006623. PubMed ID: 30452434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patch engineering: a general approach for creating proteins that have new binding activities.
    Smith G
    Trends Biochem Sci; 1998 Dec; 23(12):457-60. PubMed ID: 9868362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational protein design with backbone plasticity.
    MacDonald JT; Freemont PS
    Biochem Soc Trans; 2016 Oct; 44(5):1523-1529. PubMed ID: 27911735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adding diverse noncanonical backbones to rosetta: enabling peptidomimetic design.
    Drew K; Renfrew PD; Craven TW; Butterfoss GL; Chou FC; Lyskov S; Bullock BN; Watkins A; Labonte JW; Pacella M; Kilambi KP; Leaver-Fay A; Kuhlman B; Gray JJ; Bradley P; Kirshenbaum K; Arora PS; Das R; Bonneau R
    PLoS One; 2013; 8(7):e67051. PubMed ID: 23869206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.