BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 30407634)

  • 1. Performance analysis of a high-sensitivity multi-pinhole cardiac SPECT system with hemi-ellipsoid detectors.
    Bhusal N; Dey J; Xu J; Kalluri K; Konik A; Mukherjee JM; Pretorius PH
    Med Phys; 2019 Jan; 46(1):116-126. PubMed ID: 30407634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and evaluation of two multi-pinhole collimators for brain SPECT.
    Chen L; Tsui BMW; Mok GSP
    Ann Nucl Med; 2017 Oct; 31(8):636-648. PubMed ID: 28755084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytically based photon scatter modeling for a multipinhole cardiac SPECT camera.
    Pourmoghaddas A; Wells RG
    Med Phys; 2016 Nov; 43(11):6098. PubMed ID: 27806581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance evaluation of a novel multi-pinhole collimator on triple-NaI-detector SPECT/CT for dedicated myocardial imaging.
    Krizsan AK; Kukuts K; Al-Muhanna W; Szoboszlai Z; Balazs L; Szabo B; Kiss J; Nekolla S; Barna S; Garai I; Bukki T; Forgacs A
    EJNMMI Phys; 2023 Mar; 10(1):24. PubMed ID: 36964406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification and reduction of the collimator-detector response effect in SPECT by applying a system model during iterative image reconstruction: a simulation study.
    Kalantari F; Rajabi H; Saghari M
    Nucl Med Commun; 2012 Mar; 33(3):228-38. PubMed ID: 22134173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic uniformity requirements for pinhole SPECT.
    Seret A; Bleeser F
    J Nucl Med Technol; 2006 Mar; 34(1):43-7. PubMed ID: 16517968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitatively accurate activity measurements with a dedicated cardiac SPECT camera: Physical phantom experiments.
    Pourmoghaddas A; Wells RG
    Med Phys; 2016 Jan; 43(1):44. PubMed ID: 26745898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capabilities of multi-pinhole SPECT with two stationary detectors for in vivo rat imaging.
    Janssen JP; Hoffmann JV; Kanno T; Nose N; Grunz JP; Onoguchi M; Chen X; Lapa C; Buck AK; Higuchi T
    Sci Rep; 2020 Oct; 10(1):18616. PubMed ID: 33122774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance evaluation of fifth-generation ultra-high-resolution SPECT system with two stationary detectors and multi-pinhole imaging.
    Hoffmann JV; Janssen JP; Kanno T; Shibutani T; Onoguchi M; Lapa C; Grunz JP; Buck AK; Higuchi T
    EJNMMI Phys; 2020 Nov; 7(1):64. PubMed ID: 33140263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a dual-resolution collimator for preclinical cardiac SPECT with a stationary triple-detector system.
    Moore SC; Park MA; Liu Z; Lyon MC; Johnson LC; Lushear VH; Westberg JG; Metzler SD
    Med Phys; 2016 Dec; 43(12):6336. PubMed ID: 27908172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collimator design for a multipinhole brain SPECT insert for MRI.
    Van Audenhaege K; Van Holen R; Vanhove C; Vandenberghe S
    Med Phys; 2015 Nov; 42(11):667989. PubMed ID: 26520758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of a compact pixellated gamma camera for small animal pinhole SPECT imaging.
    Zeniya T; Watabe H; Aoi T; Kim KM; Teramoto N; Takeno T; Ohta Y; Hayashi T; Mashino H; Ota T; Yamamoto S; Iida H
    Ann Nucl Med; 2006 Jul; 20(6):409-16. PubMed ID: 16922469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced PET resolution by combining pinhole collimation and coincidence detection.
    DiFilippo FP
    Phys Med Biol; 2015 Oct; 60(20):7969-84. PubMed ID: 26418305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multipinhole small animal SPECT system with submillimeter spatial resolution.
    Funk T; Després P; Barber WC; Shah KS; Hasegawa BH
    Med Phys; 2006 May; 33(5):1259-68. PubMed ID: 16752560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scatter and crosstalk corrections for (99m)Tc/(123)I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators.
    Fan P; Hutton BF; Holstensson M; Ljungberg M; Pretorius PH; Prasad R; Ma T; Liu Y; Wang S; Thorn SL; Stacy MR; Sinusas AJ; Liu C
    Med Phys; 2015 Dec; 42(12):6895-911. PubMed ID: 26632046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved quantification in multiple-pinhole SPECT by anatomy-based reconstruction using microCT information.
    Vanhove C; Defrise M; Bossuyt A; Lahoutte T
    Eur J Nucl Med Mol Imaging; 2011 Jan; 38(1):153-65. PubMed ID: 20882279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of 180 degrees and 360 degrees acquisition for attenuation-compensated thallium-201 SPECT images.
    LaCroix KJ; Tsui BM; Hasegawa BH
    J Nucl Med; 1998 Mar; 39(3):562-74. PubMed ID: 9529312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of a Monte Carlo simulation tool for multi-pinhole SPECT.
    Mok GS; Du Y; Wang Y; Frey EC; Tsui BM
    Mol Imaging Biol; 2010 Jun; 12(3):295-304. PubMed ID: 19779896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patient-specific estimation of spatially variant image noise for a pinhole cardiac SPECT camera.
    Cuddy-Walsh SG; Wells RG
    Med Phys; 2018 May; 45(5):2033-2047. PubMed ID: 29574767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmented slant hole collimator for stationary cardiac SPECT: Monte Carlo simulations.
    Mao Y; Yu Z; Zeng GL
    Med Phys; 2015 Sep; 42(9):5426-34. PubMed ID: 26328991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.