BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30407795)

  • 1. Accurate Determination of Catalyst Loading on Glassy Carbon Disk and Its Impact on Thin Film Rotating Disk Electrode for Oxygen Reduction Reaction.
    Chourashiya M; Sharma R; Andersen SM
    Anal Chem; 2018 Dec; 90(24):14181-14187. PubMed ID: 30407795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Preparation and Testing of Fuel Cell Catalysts Using the Thin Film Rotating Disk Electrode Method.
    Inaba M; Quinson J; Bucher JR; Arenz M
    J Vis Exp; 2018 Mar; (133):. PubMed ID: 29608166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Screening of Metallic Oxygen Reduction Reaction Catalyst Thin Films Using Getter Cosputtering.
    Van Wassen AR; Murphy MJ; Molina Villarino A; Gannett CN; van Dover RB; Abruña HD
    ACS Comb Sci; 2020 Jul; 22(7):339-347. PubMed ID: 32428395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A methodology for investigating new nonprecious metal catalysts for PEM fuel cells.
    Susac D; Sode A; Zhu L; Wong PC; Teo M; Bizzotto D; Mitchell KA; Parsons RR; Campbell SA
    J Phys Chem B; 2006 Jun; 110(22):10762-70. PubMed ID: 16771324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrocatalyst Performance at the Gas/Electrolyte Interface under High-Mass-Transport Conditions: Optimization of the "Floating Electrode" Method.
    Lin X; Zalitis CM; Sharman J; Kucernak A
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47467-47481. PubMed ID: 32986947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical performance of annealed cobalt-benzotriazole/CNTs catalysts towards the oxygen reduction reaction.
    Morozan A; Jégou P; Jousselme B; Palacin S
    Phys Chem Chem Phys; 2011 Dec; 13(48):21600-7. PubMed ID: 22068682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport.
    Zalitis CM; Kramer D; Kucernak AR
    Phys Chem Chem Phys; 2013 Mar; 15(12):4329-40. PubMed ID: 23407648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the High-Current-Density Performance of PEMFC through Much Enhanced Utilization of Platinum Electrocatalysts on Carbon.
    Zhu F; Luo L; Wu A; Wang C; Cheng X; Shen S; Ke C; Yang H; Zhang J
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26076-26083. PubMed ID: 32412233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M-co (M: Pd, Ag, Au).
    Fernández JL; Walsh DA; Bard AJ
    J Am Chem Soc; 2005 Jan; 127(1):357-65. PubMed ID: 15631486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of carbon-supported Pt-Au cathode catalysts for oxygen reduction reaction.
    Liu CW; Wei YC; Wang KW
    J Colloid Interface Sci; 2009 Aug; 336(2):654-7. PubMed ID: 19515376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis.
    Carpenter MK; Moylan TE; Kukreja RS; Atwan MH; Tessema MM
    J Am Chem Soc; 2012 May; 134(20):8535-42. PubMed ID: 22524269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced Platinum-Based Oxygen Reduction Electrocatalysts for Fuel Cells.
    Huang L; Zaman S; Tian X; Wang Z; Fang W; Xia BY
    Acc Chem Res; 2021 Jan; 54(2):311-322. PubMed ID: 33411505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance and durability of Pt/C cathode catalysts with different kinds of carbons for polymer electrolyte fuel cells characterized by electrochemical and in situ XAFS techniques.
    Nagasawa K; Takao S; Higashi K; Nagamatsu S; Samjeské G; Imaizumi Y; Sekizawa O; Yamamoto T; Uruga T; Iwasawa Y
    Phys Chem Chem Phys; 2014 Jun; 16(21):10075-87. PubMed ID: 24513596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multielectrode Teflon electrochemical nanocatalyst investigation system.
    Hodnik N
    MethodsX; 2015; 2():204-10. PubMed ID: 26150990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconsidering the Benchmarking Evaluation of Catalytic Activity in Oxygen Reduction Reaction.
    Chen W; Xiang Q; Peng T; Song C; Shang W; Deng T; Wu J
    iScience; 2020 Oct; 23(10):101532. PubMed ID: 33083712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative Stability Matters: A Case Study of Palladium Hydride Nanosheets for Alkaline Fuel Cells.
    Li H; Zeng R; Feng X; Wang H; Xu W; Lu X; Xie Z; Abruña HD
    J Am Chem Soc; 2022 May; 144(18):8106-8114. PubMed ID: 35486896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium.
    Pullamsetty A; Sundara R
    J Colloid Interface Sci; 2016 Oct; 479():260-270. PubMed ID: 27393888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple Metal-Nitrogen Bonds Synergistically Boosting the Activity and Durability of High-Entropy Alloy Electrocatalysts.
    Zhao X; Cheng H; Chen X; Zhang Q; Li C; Xie J; Marinkovic N; Ma L; Zheng JC; Sasaki K
    J Am Chem Soc; 2024 Feb; 146(5):3010-3022. PubMed ID: 38278519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical formation of a Pt/Zn alloy and its use as a catalyst for oxygen reduction reaction in fuel cells.
    Sode A; Li W; Yang Y; Wong PC; Gyenge E; Mitchell KA; Bizzotto D
    J Phys Chem B; 2006 May; 110(17):8715-22. PubMed ID: 16640427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.