BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 30408207)

  • 1. Intradonor reproducibility and changes in hemolytic variables during red blood cell storage: results of recall phase of the REDS-III RBC-Omics study.
    Lanteri MC; Kanias T; Keating S; Stone M; Guo Y; Page GP; Brambilla DJ; Endres-Dighe SM; Mast AE; Bialkowski W; D'Andrea P; Cable RG; Spencer BR; Triulzi DJ; Murphy EL; Kleinman S; Gladwin MT; Busch MP;
    Transfusion; 2019 Jan; 59(1):79-88. PubMed ID: 30408207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequent blood donations alter susceptibility of red blood cells to storage- and stress-induced hemolysis.
    Kanias T; Stone M; Page GP; Guo Y; Endres-Dighe SM; Lanteri MC; Spencer BR; Cable RG; Triulzi DJ; Kiss JE; Murphy EL; Kleinman S; Gladwin MT; Busch MP; Mast AE;
    Transfusion; 2019 Jan; 59(1):67-78. PubMed ID: 30474858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood donor obesity is associated with changes in red blood cell metabolism and susceptibility to hemolysis in cold storage and in response to osmotic and oxidative stress.
    Hazegh K; Fang F; Bravo MD; Tran JQ; Muench MO; Jackman RP; Roubinian N; Bertolone L; DʼAlessandro A; Dumont L; Page GP; Kanias T
    Transfusion; 2021 Feb; 61(2):435-448. PubMed ID: 33146433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Piloting and implementation of quality assessment and quality control procedures in RBC-Omics: a large multi-center study of red blood cell hemolysis during storage.
    Stone M; Keating SM; Kanias T; Lanteri MC; Lebedeva M; Sinchar D; Hampton D; Jakub A; Rychka V; Brewer G; Bakkour S; Gefter N; Murcia K; Page GP; Endres-Dighe S; Bialkowski W; Fu X; Zimring J; Raife TJ; Kleinman S; Gladwin MT; Busch MP;
    Transfusion; 2019 Jan; 59(1):57-66. PubMed ID: 30566231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of kynurenine metabolism by blood donor genetics and biology impacts red cell hemolysis in vitro and in vivo.
    Nemkov T; Stephenson D; Erickson C; Dzieciatkowska M; Key A; Moore A; Earley EJ; Page GP; Lacroix IS; Stone M; Deng X; Raife T; Kleinman S; Zimring JC; Roubinian N; Hansen KC; Busch MP; Norris PJ; D'Alessandro A
    Blood; 2024 Feb; 143(5):456-472. PubMed ID: 37976448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Testosterone replacement therapy in blood donors modulates erythrocyte metabolism and susceptibility to hemolysis in cold storage.
    Alexander K; Hazegh K; Fang F; Sinchar D; Kiss JE; Page GP; DʼAlessandro A; Kanias T
    Transfusion; 2021 Jan; 61(1):108-123. PubMed ID: 33073382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quality assessment of red blood cell concentrates from blood donors at the extremes of the age spectrum: The BEST collaborative study.
    Cloutier M; Cognasse F; Yokoyama APH; Hazegh K; Mykhailova O; Brandon-Coatham M; Hamzeh-Cognasse H; Kutner JM; Acker JP; Kanias T;
    Transfusion; 2023 Aug; 63(8):1506-1518. PubMed ID: 37387566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmotic hemolysis is a donor-specific feature of red blood cells under various storage conditions and genetic backgrounds.
    Tzounakas VL; Anastasiadi AT; Valsami SI; Stamoulis KE; Papageorgiou EG; Politou M; Papassideri IS; Kriebardis AG; Antonelou MH
    Transfusion; 2021 Sep; 61(9):2538-2544. PubMed ID: 34146350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethnicity, sex, and age are determinants of red blood cell storage and stress hemolysis: results of the REDS-III RBC-Omics study.
    Kanias T; Lanteri MC; Page GP; Guo Y; Endres SM; Stone M; Keating S; Mast AE; Cable RG; Triulzi DJ; Kiss JE; Murphy EL; Kleinman S; Busch MP; Gladwin MT
    Blood Adv; 2017 Jun; 1(15):1132-1141. PubMed ID: 29034365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethyl glucuronide, a marker of alcohol consumption, correlates with metabolic markers of oxidant stress but not with hemolysis in stored red blood cells from healthy blood donors.
    D'Alessandro A; Fu X; Reisz JA; Stone M; Kleinman S; Zimring JC; Busch M;
    Transfusion; 2020 Jun; 60(6):1183-1196. PubMed ID: 32385922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red blood cell endothelial nitric oxide synthase does not modulate red blood cell storage hemolysis.
    Kanias T; Wang L; Lippert A; Kim-Shapiro DB; Gladwin MT
    Transfusion; 2013 May; 53(5):981-9. PubMed ID: 22897637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sex-related aspects of the red blood cell storage lesion.
    Tzounakas VL; Anastasiadi AT; Drossos PV; Karadimas DG; Valsami SÉ; Stamoulis KE; Papassideri IS; Politou M; Antonelou MH; Kriebardis AG
    Blood Transfus; 2021 May; 19(3):224-236. PubMed ID: 33085592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Donor sex, age and ethnicity impact stored red blood cell antioxidant metabolism through mechanisms in part explained by glucose 6-phosphate dehydrogenase levels and activity.
    D'Alessandro A; Fu X; Kanias T; Reisz JA; Culp-Hill R; Guo Y; Gladwin MT; Page G; Kleinman S; Lanteri M; Stone M; Busch MP; Zimring JC;
    Haematologica; 2021 May; 106(5):1290-1302. PubMed ID: 32241843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sex-specific genetic modifiers identified susceptibility of cold stored red blood cells to osmotic hemolysis.
    Fang F; Hazegh K; Mast AE; Triulzi DJ; Spencer BR; Gladwin MT; Busch MP; Kanias T; Page GP
    BMC Genomics; 2022 Mar; 23(1):227. PubMed ID: 35321643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood, sweat, and tears: Red Blood Cell-Omics study objectives, design, and recruitment activities.
    Endres-Dighe SM; Guo Y; Kanias T; Lanteri M; Stone M; Spencer B; Cable RG; Kiss JE; Kleinman S; Gladwin MT; Brambilla DJ; D'Andrea P; Triulzi DJ; Mast AE; Page GP; Busch MP;
    Transfusion; 2019 Jan; 59(1):46-56. PubMed ID: 30267427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting storage-dependent damage to red blood cells using nitrite oxidation kinetics, peroxiredoxin-2 oxidation, and hemoglobin and free heme measurements.
    Oh JY; Stapley R; Harper V; Marques MB; Patel RP
    Transfusion; 2015 Dec; 55(12):2967-78. PubMed ID: 26202471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneity of blood processing and storage additives in different centers impacts stored red blood cell metabolism as much as storage time: lessons from REDS-III-Omics.
    D'Alessandro A; Culp-Hill R; Reisz JA; Anderson M; Fu X; Nemkov T; Gehrke S; Zheng C; Kanias T; Guo Y; Page G; Gladwin MT; Kleinman S; Lanteri M; Stone M; Busch M; Zimring JC;
    Transfusion; 2019 Jan; 59(1):89-100. PubMed ID: 30353560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sex hormone intake in female blood donors: impact on haemolysis during cold storage and regulation of erythrocyte calcium influx by progesterone.
    Fang F; Hazegh K; Sinchar D; Guo Y; Page GP; Mast AE; Kleinman S; Busch MP; Kanias T
    Blood Transfus; 2019 Jul; 17(4):263-273. PubMed ID: 31385799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemolysis of red blood cells during processing and storage.
    Gkoumassi E; Dijkstra-Tiekstra MJ; Hoentjen D; de Wildt-Eggen J
    Transfusion; 2012 Mar; 52(3):489-92. PubMed ID: 21827508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher donor body mass index is associated with increased hemolysis of red blood cells at 42-days of storage: A retrospective analysis of routine quality control data.
    Sparrow RL; Payne KA; Adams GG
    Transfusion; 2021 Feb; 61(2):449-463. PubMed ID: 33231302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.