BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30408315)

  • 1. Clarifying the Difference between Iterative Saturation Mutagenesis as a Rational Guide in Directed Evolution and OmniChange as a Gene Mutagenesis Technique.
    Acevedo-Rocha CG; Sun Z; Reetz MT
    Chembiochem; 2018 Dec; 19(24):2542-2544. PubMed ID: 30408315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iterative saturation mutagenesis: a powerful approach to engineer proteins by systematically simulating Darwinian evolution.
    Acevedo-Rocha CG; Hoebenreich S; Reetz MT
    Methods Mol Biol; 2014; 1179():103-28. PubMed ID: 25055773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Focused rational iterative site-specific mutagenesis (FRISM).
    Li D; Wu Q; Reetz MT
    Methods Enzymol; 2020; 643():225-242. PubMed ID: 32896283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DC-Analyzer-facilitated combinatorial strategy for rapid directed evolution of functional enzymes with multiple mutagenesis sites.
    Wang X; Zheng K; Zheng H; Nie H; Yang Z; Tang L
    J Biotechnol; 2014 Dec; 192 Pt A():102-7. PubMed ID: 25449543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Crucial Role of Methodology Development in Directed Evolution of Selective Enzymes.
    Qu G; Li A; Acevedo-Rocha CG; Sun Z; Reetz MT
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13204-13231. PubMed ID: 31267627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed evolution by using iterative saturation mutagenesis based on multiresidue sites.
    Parra LP; Agudo R; Reetz MT
    Chembiochem; 2013 Nov; 14(17):2301-9. PubMed ID: 24136881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes.
    Reetz MT; Carballeira JD
    Nat Protoc; 2007; 2(4):891-903. PubMed ID: 17446890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the thermostable properties of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by a combinatorial directed evolution strategy.
    Wu Z; Deng W; Tong Y; Liao Q; Xin D; Yu H; Feng J; Tang L
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3201-3211. PubMed ID: 28074221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Recent advances in directed evolution].
    Qu G; Zhao J; Zheng P; Sun J; Sun Z
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan; 34(1):1-11. PubMed ID: 29380566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polishing the craft of genetic diversity creation in directed evolution.
    Tee KL; Wong TS
    Biotechnol Adv; 2013 Dec; 31(8):1707-21. PubMed ID: 24012599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods.
    Reetz MT; Prasad S; Carballeira JD; Gumulya Y; Bocola M
    J Am Chem Soc; 2010 Jul; 132(26):9144-52. PubMed ID: 20536132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparative Reengineering Study of cpADH5 through Iterative and Simultaneous Multisite Saturation Mutagenesis.
    Ensari Y; Dhoke GV; Davari MD; Ruff AJ; Schwaneberg U
    Chembiochem; 2018 Jul; 19(14):1563-1569. PubMed ID: 29708641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the selectivity and stability of proteins by new strategies in directed evolution: the case of organocatalytic enzymes.
    Reetz MT
    Ernst Schering Found Symp Proc; 2007; (2):321-40. PubMed ID: 18642531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solubilization and Iterative Saturation Mutagenesis of α1,3-fucosyltransferase from Helicobacter pylori to enhance its catalytic efficiency.
    Choi YH; Kim JH; Park BS; Kim BG
    Biotechnol Bioeng; 2016 Aug; 113(8):1666-75. PubMed ID: 26804479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OmniChange: simultaneous site saturation of up to five codons.
    Dennig A; Marienhagen J; Ruff AJ; Schwaneberg U
    Methods Mol Biol; 2014; 1179():139-49. PubMed ID: 25055775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting the lipase from Pseudomonas aeruginosa: directed evolution of substrate acceptance and enantioselectivity using iterative saturation mutagenesis.
    Prasad S; Bocola M; Reetz MT
    Chemphyschem; 2011 Jun; 12(8):1550-7. PubMed ID: 21472964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-site saturation by OmniChange yields a pH- and thermally improved phytase.
    Shivange AV; Dennig A; Schwaneberg U
    J Biotechnol; 2014 Jan; 170():68-72. PubMed ID: 24315971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulating the stereoselectivity of limonene epoxide hydrolase by directed evolution based on iterative saturation mutagenesis.
    Zheng H; Reetz MT
    J Am Chem Soc; 2010 Nov; 132(44):15744-51. PubMed ID: 20958062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shedding light on the efficacy of laboratory evolution based on iterative saturation mutagenesis.
    Reetz MT; Kahakeaw D; Sanchis J
    Mol Biosyst; 2009 Feb; 5(2):115-22. PubMed ID: 19156255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the thermal robustness of an enzyme by directed evolution: least favorable starting points and inferior mutants can map superior evolutionary pathways.
    Gumulya Y; Reetz MT
    Chembiochem; 2011 Nov; 12(16):2502-10. PubMed ID: 21913300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.