These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30408315)

  • 1. Clarifying the Difference between Iterative Saturation Mutagenesis as a Rational Guide in Directed Evolution and OmniChange as a Gene Mutagenesis Technique.
    Acevedo-Rocha CG; Sun Z; Reetz MT
    Chembiochem; 2018 Dec; 19(24):2542-2544. PubMed ID: 30408315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iterative saturation mutagenesis: a powerful approach to engineer proteins by systematically simulating Darwinian evolution.
    Acevedo-Rocha CG; Hoebenreich S; Reetz MT
    Methods Mol Biol; 2014; 1179():103-28. PubMed ID: 25055773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Focused rational iterative site-specific mutagenesis (FRISM).
    Li D; Wu Q; Reetz MT
    Methods Enzymol; 2020; 643():225-242. PubMed ID: 32896283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DC-Analyzer-facilitated combinatorial strategy for rapid directed evolution of functional enzymes with multiple mutagenesis sites.
    Wang X; Zheng K; Zheng H; Nie H; Yang Z; Tang L
    J Biotechnol; 2014 Dec; 192 Pt A():102-7. PubMed ID: 25449543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Crucial Role of Methodology Development in Directed Evolution of Selective Enzymes.
    Qu G; Li A; Acevedo-Rocha CG; Sun Z; Reetz MT
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13204-13231. PubMed ID: 31267627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed evolution by using iterative saturation mutagenesis based on multiresidue sites.
    Parra LP; Agudo R; Reetz MT
    Chembiochem; 2013 Nov; 14(17):2301-9. PubMed ID: 24136881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes.
    Reetz MT; Carballeira JD
    Nat Protoc; 2007; 2(4):891-903. PubMed ID: 17446890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the thermostable properties of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by a combinatorial directed evolution strategy.
    Wu Z; Deng W; Tong Y; Liao Q; Xin D; Yu H; Feng J; Tang L
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3201-3211. PubMed ID: 28074221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Recent advances in directed evolution].
    Qu G; Zhao J; Zheng P; Sun J; Sun Z
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan; 34(1):1-11. PubMed ID: 29380566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polishing the craft of genetic diversity creation in directed evolution.
    Tee KL; Wong TS
    Biotechnol Adv; 2013 Dec; 31(8):1707-21. PubMed ID: 24012599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods.
    Reetz MT; Prasad S; Carballeira JD; Gumulya Y; Bocola M
    J Am Chem Soc; 2010 Jul; 132(26):9144-52. PubMed ID: 20536132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparative Reengineering Study of cpADH5 through Iterative and Simultaneous Multisite Saturation Mutagenesis.
    Ensari Y; Dhoke GV; Davari MD; Ruff AJ; Schwaneberg U
    Chembiochem; 2018 Jul; 19(14):1563-1569. PubMed ID: 29708641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the selectivity and stability of proteins by new strategies in directed evolution: the case of organocatalytic enzymes.
    Reetz MT
    Ernst Schering Found Symp Proc; 2007; (2):321-40. PubMed ID: 18642531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solubilization and Iterative Saturation Mutagenesis of α1,3-fucosyltransferase from Helicobacter pylori to enhance its catalytic efficiency.
    Choi YH; Kim JH; Park BS; Kim BG
    Biotechnol Bioeng; 2016 Aug; 113(8):1666-75. PubMed ID: 26804479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OmniChange: simultaneous site saturation of up to five codons.
    Dennig A; Marienhagen J; Ruff AJ; Schwaneberg U
    Methods Mol Biol; 2014; 1179():139-49. PubMed ID: 25055775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting the lipase from Pseudomonas aeruginosa: directed evolution of substrate acceptance and enantioselectivity using iterative saturation mutagenesis.
    Prasad S; Bocola M; Reetz MT
    Chemphyschem; 2011 Jun; 12(8):1550-7. PubMed ID: 21472964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-site saturation by OmniChange yields a pH- and thermally improved phytase.
    Shivange AV; Dennig A; Schwaneberg U
    J Biotechnol; 2014 Jan; 170():68-72. PubMed ID: 24315971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulating the stereoselectivity of limonene epoxide hydrolase by directed evolution based on iterative saturation mutagenesis.
    Zheng H; Reetz MT
    J Am Chem Soc; 2010 Nov; 132(44):15744-51. PubMed ID: 20958062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shedding light on the efficacy of laboratory evolution based on iterative saturation mutagenesis.
    Reetz MT; Kahakeaw D; Sanchis J
    Mol Biosyst; 2009 Feb; 5(2):115-22. PubMed ID: 19156255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the thermal robustness of an enzyme by directed evolution: least favorable starting points and inferior mutants can map superior evolutionary pathways.
    Gumulya Y; Reetz MT
    Chembiochem; 2011 Nov; 12(16):2502-10. PubMed ID: 21913300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.