These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30408315)

  • 21. New Concepts for Increasing the Efficiency in Directed Evolution of Stereoselective Enzymes.
    Sun Z; Wikmark Y; Bäckvall JE; Reetz MT
    Chemistry; 2016 Apr; 22(15):5046-54. PubMed ID: 26914401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Many pathways in laboratory evolution can lead to improved enzymes: how to escape from local minima.
    Gumulya Y; Sanchis J; Reetz MT
    Chembiochem; 2012 May; 13(7):1060-6. PubMed ID: 22522601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Constructing and analyzing the fitness landscape of an experimental evolutionary process.
    Reetz MT; Sanchis J
    Chembiochem; 2008 Sep; 9(14):2260-7. PubMed ID: 18712749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Semi-rational engineering of cytochrome P450sca-2 in a hybrid system for enhanced catalytic activity: insights into the important role of electron transfer.
    Ba L; Li P; Zhang H; Duan Y; Lin Z
    Biotechnol Bioeng; 2013 Nov; 110(11):2815-25. PubMed ID: 23737252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparing Different Strategies in Directed Evolution of Enzyme Stereoselectivity: Single- versus Double-Code Saturation Mutagenesis.
    Sun Z; Lonsdale R; Li G; Reetz MT
    Chembiochem; 2016 Oct; 17(19):1865-1872. PubMed ID: 27411213
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Making Enzymes Suitable for Organic Chemistry by Rational Protein Design.
    Reetz M
    Chembiochem; 2022 Jul; 23(14):e202200049. PubMed ID: 35389556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Manipulating the expression rate and enantioselectivity of an epoxide hydrolase by using directed evolution.
    Reetz MT; Zheng H
    Chembiochem; 2011 Jul; 12(10):1529-35. PubMed ID: 21567703
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combinatorial evolution of phosphotriesterase toward a robust malathion degrader by hierarchical iteration mutagenesis.
    Luo XJ; Zhao J; Li CX; Bai YP; Reetz MT; Yu HL; Xu JH
    Biotechnol Bioeng; 2016 Nov; 113(11):2350-7. PubMed ID: 27216910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Directed Evolution of Proteins Based on Mutational Scanning.
    Acevedo-Rocha CG; Ferla M; Reetz MT
    Methods Mol Biol; 2018; 1685():87-128. PubMed ID: 29086305
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-step combined focused epPCR and saturation mutagenesis for thermostability evolution of a new cold-active xylanase.
    Acevedo JP; Reetz MT; Asenjo JA; Parra LP
    Enzyme Microb Technol; 2017 May; 100():60-70. PubMed ID: 28284313
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Addressing the numbers problem in directed evolution.
    Reetz MT; Kahakeaw D; Lohmer R
    Chembiochem; 2008 Jul; 9(11):1797-804. PubMed ID: 18567049
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probabilistic methods in directed evolution: library size, mutation rate, and diversity.
    Nov Y
    Methods Mol Biol; 2014; 1179():261-78. PubMed ID: 25055784
    [TBL] [Abstract][Full Text] [Related]  

  • 33. OmniChange: the sequence independent method for simultaneous site-saturation of five codons.
    Dennig A; Shivange AV; Marienhagen J; Schwaneberg U
    PLoS One; 2011; 6(10):e26222. PubMed ID: 22039444
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous engineering of an enzyme's entrance tunnel and active site: the case of monoamine oxidase MAO-N.
    Li G; Yao P; Gong R; Li J; Liu P; Lonsdale R; Wu Q; Lin J; Zhu D; Reetz MT
    Chem Sci; 2017 May; 8(5):4093-4099. PubMed ID: 30155214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Random mutagenesis methods for in vitro directed enzyme evolution.
    Labrou NE
    Curr Protein Pept Sci; 2010 Feb; 11(1):91-100. PubMed ID: 20201809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reengineered glucose oxidase for amperometric glucose determination in diabetes analytics.
    Arango Gutierrez E; Mundhada H; Meier T; Duefel H; Bocola M; Schwaneberg U
    Biosens Bioelectron; 2013 Dec; 50():84-90. PubMed ID: 23835222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Semi-rational engineering of cytochrome CYP153A from Marinobacter aquaeolei for improved ω-hydroxylation activity towards oleic acid.
    Duan Y; Ba L; Gao J; Gao X; Zhu D; de Jong RM; Mink D; Kaluzna I; Lin Z
    Appl Microbiol Biotechnol; 2016 Oct; 100(20):8779-88. PubMed ID: 27234138
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutability-Landscape-Guided Engineering of l-Threonine Aldolase Revealing the Prelog Rule in Mediating Diastereoselectivity of C-C Bond Formation.
    Zheng W; Pu Z; Xiao L; Xu G; Yang L; Yu H; Wu J
    Angew Chem Int Ed Engl; 2023 Jan; 62(2):e202213855. PubMed ID: 36367520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced catalytic efficiency and enantioselectivity of epoxide hydrolase from Agrobacterium radiobacter AD1 by iterative saturation mutagenesis for (R)-epichlorohydrin synthesis.
    Zou SP; Zheng YG; Wu Q; Wang ZC; Xue YP; Liu ZQ
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):733-742. PubMed ID: 29151159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combinatorial InVitroFlow-assisted mutagenesis (CombIMut) yields a 41-fold improved CelA2 cellulase.
    Körfer G; Besirlioglu V; Davari MD; Martinez R; Vojcic L; Schwaneberg U
    Biotechnol Bioeng; 2022 Aug; 119(8):2076-2087. PubMed ID: 35451061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.