These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30408690)

  • 1. Directed assembly of nanoparticles into continuous microstructures by standing surface acoustic waves.
    Sazan H; Piperno S; Layani M; Magdassi S; Shpaisman H
    J Colloid Interface Sci; 2019 Feb; 536():701-709. PubMed ID: 30408690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tritoroidal particle rings formation in open microfluidics induced by standing surface acoustic waves.
    Zheng T; Wang C; Xu C
    Electrophoresis; 2020 Jun; 41(10-11):983-990. PubMed ID: 32056225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves.
    Destgeer G; Sung HJ
    Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.
    Collins DJ; Ma Z; Han J; Ai Y
    Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel.
    Doinikov AA; Thibault P; Marmottant P
    Ultrasonics; 2018 Jul; 87():7-19. PubMed ID: 29428563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustophoretic Control of Microparticle Transport Using Dual-Wavelength Surface Acoustic Wave Devices.
    Hsu JC; Hsu CH; Huang YW
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30642118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Standing Surface Acoustic Wave-Assisted Fabrication of Region-Selective Microstructures via User-Defined Waveguides.
    Wang Y; Han C; Mei D
    Langmuir; 2019 Aug; 35(34):11225-11231. PubMed ID: 31390213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly of colloidal nanoparticles directed by the microstructures of polycrystalline ice.
    Shen X; Chen L; Li D; Zhu L; Wang H; Liu C; Wang Y; Xiong Q; Chen H
    ACS Nano; 2011 Oct; 5(10):8426-33. PubMed ID: 21942743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic streaming in a microfluidic channel with a reflector: Case of a standing wave generated by two counterpropagating leaky surface waves.
    Doinikov AA; Thibault P; Marmottant P
    Phys Rev E; 2017 Jul; 96(1-1):013101. PubMed ID: 29347059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields.
    Liu S; Yang Y; Ni Z; Guo X; Luo L; Tu J; Zhang D; Zhang AJ
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28753955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of Ag nanoparticle-biotin composites into long fiberlike microstructures.
    Hegde S; Kapoor S; Joshi S; Mukherjee T
    J Colloid Interface Sci; 2006 May; 297(2):637-43. PubMed ID: 16376926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The waves that make the pattern: a review on acoustic manipulation in biomedical research.
    Guex AG; Di Marzio N; Eglin D; Alini M; Serra T
    Mater Today Bio; 2021 Mar; 10():100110. PubMed ID: 33997761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local Acoustic Fields Powered Assembly of Microparticles and Applications.
    Shen H; Zhao K; Wang Z; Xu X; Lu J; Liu W; Lu X
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31888215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic properties, responsiveness, and stability of paramagnetic dumbbell and ellipsoid colloids.
    Kim H; Furst EM
    J Colloid Interface Sci; 2020 Apr; 566():419-426. PubMed ID: 32018182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic tweezing of particles using decaying opposing travelling surface acoustic waves (DOTSAW).
    Ng JW; Devendran C; Neild A
    Lab Chip; 2017 Oct; 17(20):3489-3497. PubMed ID: 28929163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conductive inks with a "built-in" mechanism that enables sintering at room temperature.
    Grouchko M; Kamyshny A; Mihailescu CF; Anghel DF; Magdassi S
    ACS Nano; 2011 Apr; 5(4):3354-9. PubMed ID: 21438563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Aligned Acoustofluidic Particle Focusing and Patterning in Microfluidic Channels from Channel-Based Acoustic Waveguides.
    Collins DJ; O'Rorke R; Devendran C; Ma Z; Han J; Neild A; Ai Y
    Phys Rev Lett; 2018 Feb; 120(7):074502. PubMed ID: 29542954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and study of polyacryamide-stabilized silver nanoparticles through a one-pot process.
    Chen M; Wang LY; Han JT; Zhang JY; Li ZY; Qian DJ
    J Phys Chem B; 2006 Jun; 110(23):11224-31. PubMed ID: 16771388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional manipulation of single cells using surface acoustic waves.
    Guo F; Mao Z; Chen Y; Xie Z; Lata JP; Li P; Ren L; Liu J; Yang J; Dao M; Suresh S; Huang TJ
    Proc Natl Acad Sci U S A; 2016 Feb; 113(6):1522-7. PubMed ID: 26811444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.
    Collins DJ; Ma Z; Ai Y
    Anal Chem; 2016 May; 88(10):5513-22. PubMed ID: 27102956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.