BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

509 related articles for article (PubMed ID: 30408710)

  • 1. Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: A review.
    Roelker SA; Bowden MG; Kautz SA; Neptune RR
    Gait Posture; 2019 Feb; 68():6-14. PubMed ID: 30408710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in self-selected and fastest-comfortable walking in post-stroke hemiparetic persons.
    Beaman CB; Peterson CL; Neptune RR; Kautz SA
    Gait Posture; 2010 Mar; 31(3):311-6. PubMed ID: 20006505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Task-specific training for improving propulsion symmetry and gait speed in people in the chronic phase after stroke: a proof-of-concept study.
    Alingh JF; Groen BE; Kamphuis JF; Geurts ACH; Weerdesteyn V
    J Neuroeng Rehabil; 2021 Apr; 18(1):69. PubMed ID: 33892754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forward propulsion asymmetry is indicative of changes in plantarflexor coordination during walking in individuals with post-stroke hemiparesis.
    Allen JL; Kautz SA; Neptune RR
    Clin Biomech (Bristol, Avon); 2014 Aug; 29(7):780-6. PubMed ID: 24973825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Articulated ankle-foot-orthosis improves inter-limb propulsion symmetry during walking adaptability task post-stroke.
    Vistamehr A; Neptune RR; Conroy CL; Freeborn PA; Brunetti GM; Fox EJ
    Clin Biomech (Bristol, Avon); 2024 Jun; 116():106268. PubMed ID: 38795609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Presence of a Paretic Propulsion Reserve During Gait in Individuals Following Stroke.
    Lewek MD; Raiti C; Doty A
    Neurorehabil Neural Repair; 2018 Dec; 32(12):1011-1019. PubMed ID: 30558525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke.
    Genthe K; Schenck C; Eicholtz S; Zajac-Cox L; Wolf S; Kesar TM
    Top Stroke Rehabil; 2018 Apr; 25(3):186-193. PubMed ID: 29457532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination of the non-paretic leg during hemiparetic gait: expected and novel compensatory patterns.
    Raja B; Neptune RR; Kautz SA
    Clin Biomech (Bristol, Avon); 2012 Dec; 27(10):1023-30. PubMed ID: 22981679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. These legs were made for propulsion: advancing the diagnosis and treatment of post-stroke propulsion deficits.
    Awad LN; Lewek MD; Kesar TM; Franz JR; Bowden MG
    J Neuroeng Rehabil; 2020 Oct; 17(1):139. PubMed ID: 33087137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow and faster post-stroke walkers have a different trunk progression and braking impulse during gait.
    Duclos NC; Duclos C; Nadeau S
    Gait Posture; 2019 Feb; 68():483-487. PubMed ID: 30616177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between muscle contributions to walking subtasks and functional walking status in persons with post-stroke hemiparesis.
    Hall AL; Peterson CL; Kautz SA; Neptune RR
    Clin Biomech (Bristol, Avon); 2011 Jun; 26(5):509-15. PubMed ID: 21251738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking.
    Turns LJ; Neptune RR; Kautz SA
    Arch Phys Med Rehabil; 2007 Sep; 88(9):1127-35. PubMed ID: 17826457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Timing of propulsion-related biomechanical variables is impaired in individuals with post-stroke hemiparesis.
    Alam Z; Rendos NK; Vargas AM; Makanjuola J; Kesar TM
    Gait Posture; 2022 Jul; 96():275-278. PubMed ID: 35716486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central Drive to the Paretic Ankle Plantarflexors Affects the Relationship Between Propulsion and Walking Speed After Stroke.
    Awad LN; Hsiao H; Binder-Macleod SA
    J Neurol Phys Ther; 2020 Jan; 44(1):42-48. PubMed ID: 31834220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of merged muscle excitation modules on post-stroke hemiparetic walking performance.
    Allen JL; Kautz SA; Neptune RR
    Clin Biomech (Bristol, Avon); 2013 Jul; 28(6):697-704. PubMed ID: 23830138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness of rehabilitation interventions to improve paretic propulsion in individuals with stroke - A systematic review.
    Alingh JF; Groen BE; Van Asseldonk EHF; Geurts ACH; Weerdesteyn V
    Clin Biomech (Bristol, Avon); 2020 Jan; 71():176-188. PubMed ID: 31770660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking.
    Bowden MG; Balasubramanian CK; Neptune RR; Kautz SA
    Stroke; 2006 Mar; 37(3):872-6. PubMed ID: 16456121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of locomotor rehabilitation on module quality and post-stroke hemiparetic walking performance.
    Routson RL; Clark DJ; Bowden MG; Kautz SA; Neptune RR
    Gait Posture; 2013 Jul; 38(3):511-7. PubMed ID: 23489952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Augmenting propulsion demands during split-belt walking increases locomotor adaptation of asymmetric step lengths.
    Sombric CJ; Torres-Oviedo G
    J Neuroeng Rehabil; 2020 Jun; 17(1):69. PubMed ID: 32493440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leg extension is an important predictor of paretic leg propulsion in hemiparetic walking.
    Peterson CL; Cheng J; Kautz SA; Neptune RR
    Gait Posture; 2010 Oct; 32(4):451-6. PubMed ID: 20656492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.