BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

510 related articles for article (PubMed ID: 30408710)

  • 21. Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis.
    Balasubramanian CK; Bowden MG; Neptune RR; Kautz SA
    Arch Phys Med Rehabil; 2007 Jan; 88(1):43-9. PubMed ID: 17207674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contribution of Paretic and Nonparetic Limb Peak Propulsive Forces to Changes in Walking Speed in Individuals Poststroke.
    Hsiao H; Awad LN; Palmer JA; Higginson JS; Binder-Macleod SA
    Neurorehabil Neural Repair; 2016 Sep; 30(8):743-52. PubMed ID: 26721869
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Paretic Propulsion and Trailing Limb Angle Are Key Determinants of Long-Distance Walking Function After Stroke.
    Awad LN; Binder-Macleod SA; Pohlig RT; Reisman DS
    Neurorehabil Neural Repair; 2015 Jul; 29(6):499-508. PubMed ID: 25385764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Step length asymmetry is representative of compensatory mechanisms used in post-stroke hemiparetic walking.
    Allen JL; Kautz SA; Neptune RR
    Gait Posture; 2011 Apr; 33(4):538-43. PubMed ID: 21316240
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combining muscle synergies and biomechanical analysis to assess gait in stroke patients.
    Barroso FO; Torricelli D; Molina-Rueda F; Alguacil-Diego IM; Cano-de-la-Cuerda R; Santos C; Moreno JC; Miangolarra-Page JC; Pons JL
    J Biomech; 2017 Oct; 63():98-103. PubMed ID: 28882330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Locomotor Adaptability Task Promotes Intense and Task-Appropriate Output From the Paretic Leg During Walking.
    Clark DJ; Neptune RR; Behrman AL; Kautz SA
    Arch Phys Med Rehabil; 2016 Mar; 97(3):493-6. PubMed ID: 26525528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Persons post-stroke improve step length symmetry by walking asymmetrically.
    Padmanabhan P; Rao KS; Gulhar S; Cherry-Allen KM; Leech KA; Roemmich RT
    J Neuroeng Rehabil; 2020 Aug; 17(1):105. PubMed ID: 32746886
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds.
    Chen G; Patten C; Kothari DH; Zajac FE
    Gait Posture; 2005 Aug; 22(1):51-6. PubMed ID: 15996592
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of backward versus forward locomotor training on gait speed and balance control post-stroke: Recovery or compensation?
    Bansal K; Vistamehr A; Conroy CL; Fox EJ; Rose DK
    J Biomech; 2023 Jun; 155():111644. PubMed ID: 37229888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pre-swing deficits in forward propulsion, swing initiation and power generation by individual muscles during hemiparetic walking.
    Peterson CL; Hall AL; Kautz SA; Neptune RR
    J Biomech; 2010 Aug; 43(12):2348-55. PubMed ID: 20466377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Symmetry of corticomotor input to plantarflexors influences the propulsive strategy used to increase walking speed post-stroke.
    Palmer JA; Hsiao H; Awad LN; Binder-Macleod SA
    Clin Neurophysiol; 2016 Mar; 127(3):1837-44. PubMed ID: 26724913
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Altered post-stroke propulsion is related to paretic swing phase kinematics.
    Dean JC; Bowden MG; Kelly AL; Kautz SA
    Clin Biomech (Bristol, Avon); 2020 Feb; 72():24-30. PubMed ID: 31809919
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immediate improvements in post-stroke gait biomechanics are induced with both real-time limb position and propulsive force biofeedback.
    Santucci V; Alam Z; Liu J; Spencer J; Faust A; Cobb A; Konantz J; Eicholtz S; Wolf S; Kesar TM
    J Neuroeng Rehabil; 2023 Mar; 20(1):37. PubMed ID: 37004111
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time course of functional and biomechanical improvements during a gait training intervention in persons with chronic stroke.
    Reisman D; Kesar T; Perumal R; Roos M; Rudolph K; Higginson J; Helm E; Binder-Macleod S
    J Neurol Phys Ther; 2013 Dec; 37(4):159-65. PubMed ID: 24189337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identifying candidates for targeted gait rehabilitation after stroke: better prediction through biomechanics-informed characterization.
    Awad LN; Reisman DS; Pohlig RT; Binder-Macleod SA
    J Neuroeng Rehabil; 2016 Sep; 13(1):84. PubMed ID: 27663199
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The kinematics of paretic lower limb in aquatic gait with equipment in people with post-stroke hemiparesis.
    Pereira JA; de Souza KK; Pereira SM; Ruschel C; Hubert M; Michaelsen SM
    Clin Biomech (Bristol, Avon); 2019 Dec; 70():16-22. PubMed ID: 31382199
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of walking with loads above the ankle on gait parameters of persons with hemiparesis after stroke.
    Duclos C; Nadeau S; Bourgeois N; Bouyer L; Richards CL
    Clin Biomech (Bristol, Avon); 2014 Mar; 29(3):265-71. PubMed ID: 24405568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Linking gait mechanics with perceived quality of life and participation after stroke.
    Rowland DM; Lewek MD
    PLoS One; 2022; 17(9):e0274511. PubMed ID: 36129881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of lateral weight transfer is associated with walking speed in individuals post-stroke.
    Hsiao H; Gray VL; Creath RA; Binder-Macleod SA; Rogers MW
    J Biomech; 2017 Jul; 60():72-78. PubMed ID: 28687151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting paretic propulsion to improve poststroke walking function: a preliminary study.
    Awad LN; Reisman DS; Kesar TM; Binder-Macleod SA
    Arch Phys Med Rehabil; 2014 May; 95(5):840-8. PubMed ID: 24378803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.