These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 30408710)

  • 61. A unilateral robotic knee exoskeleton to assess the role of natural gait assistance in hemiparetic patients.
    Lora-Millan JS; Sanchez-Cuesta FJ; Romero JP; Moreno JC; Rocon E
    J Neuroeng Rehabil; 2022 Oct; 19(1):109. PubMed ID: 36209096
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Gait asymmetry pattern following stroke determines acute response to locomotor task.
    Little VL; Perry LA; Mercado MWV; Kautz SA; Patten C
    Gait Posture; 2020 Mar; 77():300-307. PubMed ID: 32126493
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Co-contraction around the knee and the ankle joints during post-stroke gait.
    Souissi H; Zory R; Bredin J; Roche N; Gerus P
    Eur J Phys Rehabil Med; 2018 Jun; 54(3):380-387. PubMed ID: 28849896
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Atypical cortical drive during activation of the paretic and nonparetic tibialis anterior is related to gait deficits in chronic stroke.
    Palmer JA; Needle AR; Pohlig RT; Binder-Macleod SA
    Clin Neurophysiol; 2016 Jan; 127(1):716-723. PubMed ID: 26142877
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Single Session of Functional Electrical Stimulation-Assisted Walking Produces Corticomotor Symmetry Changes Related to Changes in Poststroke Walking Mechanics.
    Palmer JA; Hsiao H; Wright T; Binder-Macleod SA
    Phys Ther; 2017 May; 97(5):550-560. PubMed ID: 28339828
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Partial body weight support treadmill training speed influences paretic and non-paretic leg muscle activation, stride characteristics, and ratings of perceived exertion during acute stroke rehabilitation.
    Burnfield JM; Buster TW; Goldman AJ; Corbridge LM; Harper-Hanigan K
    Hum Mov Sci; 2016 Jun; 47():16-28. PubMed ID: 26845732
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effects of unilateral real-time biofeedback on propulsive forces during gait.
    Schenck C; Kesar TM
    J Neuroeng Rehabil; 2017 Jun; 14(1):52. PubMed ID: 28583196
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A systematic review of mechanisms of gait speed change post-stroke. Part 2: exercise capacity, muscle activation, kinetics, and kinematics.
    Wonsetler EC; Bowden MG
    Top Stroke Rehabil; 2017 Jul; 24(5):394-403. PubMed ID: 28218021
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A soft robotic exosuit improves walking in patients after stroke.
    Awad LN; Bae J; O'Donnell K; De Rossi SMM; Hendron K; Sloot LH; Kudzia P; Allen S; Holt KG; Ellis TD; Walsh CJ
    Sci Transl Med; 2017 Jul; 9(400):. PubMed ID: 28747517
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Ankle stiffness modulation during different gait speeds in individuals post-stroke.
    Hinton EH; Likens A; Hsiao HY; Binder-Markey BI; Binder-Macleod SA; Knarr BA
    Clin Biomech (Bristol, Avon); 2022 Oct; 99():105761. PubMed ID: 36099707
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Trailing limb angle is a surrogate for propulsive limb forces during walking post-stroke.
    Lewek MD; Sawicki GS
    Clin Biomech (Bristol, Avon); 2019 Jul; 67():115-118. PubMed ID: 31102839
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Post-stroke deficits in the step-by-step control of paretic step width.
    Stimpson KH; Heitkamp LN; Embry AE; Dean JC
    Gait Posture; 2019 May; 70():136-140. PubMed ID: 30856525
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Abnormal volitional hip torque phasing and hip impairments in gait post stroke.
    Hyngstrom A; Onushko T; Chua M; Schmit BD
    J Neurophysiol; 2010 Mar; 103(3):1557-68. PubMed ID: 20089823
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Walking velocity and lower limb coordination in hemiparesis.
    Hutin E; Pradon D; Barbier F; Bussel B; Gracies JM; Roche N
    Gait Posture; 2012 Jun; 36(2):205-11. PubMed ID: 22551503
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Indirect measurement of anterior-posterior ground reaction forces using a minimal set of wearable inertial sensors: from healthy to hemiparetic walking.
    Revi DA; Alvarez AM; Walsh CJ; De Rossi SMM; Awad LN
    J Neuroeng Rehabil; 2020 Jun; 17(1):82. PubMed ID: 32600348
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Propulsive Forces Applied to the Body's Center of Mass Affect Metabolic Energetics Poststroke.
    Penke K; Scott K; Sinskey Y; Lewek MD
    Arch Phys Med Rehabil; 2019 Jun; 100(6):1068-1075. PubMed ID: 30391412
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Individual Differences in Locomotor Function Predict the Capacity to Reduce Asymmetry and Modify the Energetic Cost of Walking Poststroke.
    Sánchez N; Finley JM
    Neurorehabil Neural Repair; 2018 Aug; 32(8):701-713. PubMed ID: 29998788
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Computational Design of FastFES Treatment to Improve Propulsive Force Symmetry During Post-stroke Gait: A Feasibility Study.
    Sauder NR; Meyer AJ; Allen JL; Ting LH; Kesar TM; Fregly BJ
    Front Neurorobot; 2019; 13():80. PubMed ID: 31632261
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Quantifiable patterns of limb loading and unloading during hemiparetic gait: Relation to kinetic and kinematic parameters.
    Raja B; Neptune RR; Kautz SA
    J Rehabil Res Dev; 2012; 49(9):1293-304. PubMed ID: 23408212
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Subtasks affecting step-length asymmetry in post-stroke hemiparetic walking.
    Kim WS
    Hum Mov Sci; 2016 Oct; 49():87-94. PubMed ID: 27348510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.