These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 30408941)

  • 21. Impact of the cross-pathway control on the regulation of lysine and penicillin biosynthesis in Aspergillus nidulans.
    Busch S; Bode HB; Brakhage AA; Braus GH
    Curr Genet; 2003 Jan; 42(4):209-19. PubMed ID: 12589472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glycosylphosphatidylinositol (GPI) anchor is required in Aspergillus fumigatus for morphogenesis and virulence.
    Li H; Zhou H; Luo Y; Ouyang H; Hu H; Jin C
    Mol Microbiol; 2007 May; 64(4):1014-27. PubMed ID: 17501924
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MybA, a transcription factor involved in conidiation and conidial viability of the human pathogen Aspergillus fumigatus.
    Valsecchi I; Sarikaya-Bayram Ö; Wong Sak Hoi J; Muszkieta L; Gibbons J; Prevost MC; Mallet A; Krijnse-Locker J; Ibrahim-Granet O; Mouyna I; Carr P; Bromley M; Aimanianda V; Yu JH; Rokas A; Braus GH; Saveanu C; Bayram Ö; Latgé JP
    Mol Microbiol; 2017 Sep; 105(6):880-900. PubMed ID: 28677124
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The hypoxia-induced dehydrogenase HorA is required for coenzyme Q10 biosynthesis, azole sensitivity and virulence of Aspergillus fumigatus.
    Kroll K; Shekhova E; Mattern DJ; Thywissen A; Jacobsen ID; Strassburger M; Heinekamp T; Shelest E; Brakhage AA; Kniemeyer O
    Mol Microbiol; 2016 Jul; 101(1):92-108. PubMed ID: 26991818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the developmental regulator FlbE in Aspergillus fumigatus and Aspergillus nidulans.
    Kwon NJ; Shin KS; Yu JH
    Fungal Genet Biol; 2010 Dec; 47(12):981-93. PubMed ID: 20817115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deletion of the gliP gene of Aspergillus fumigatus results in loss of gliotoxin production but has no effect on virulence of the fungus in a low-dose mouse infection model.
    Kupfahl C; Heinekamp T; Geginat G; Ruppert T; Härtl A; Hof H; Brakhage AA
    Mol Microbiol; 2006 Oct; 62(1):292-302. PubMed ID: 16956378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification and Characterization of a Novel Aspergillus fumigatus Rhomboid Family Putative Protease, RbdA, Involved in Hypoxia Sensing and Virulence.
    Vaknin Y; Hillmann F; Iannitti R; Ben Baruch N; Sandovsky-Losica H; Shadkchan Y; Romani L; Brakhage A; Kniemeyer O; Osherov N
    Infect Immun; 2016 Jun; 84(6):1866-1878. PubMed ID: 27068092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A fungus-specific ras homolog contributes to the hyphal growth and virulence of Aspergillus fumigatus.
    Fortwendel JR; Zhao W; Bhabhra R; Park S; Perlin DS; Askew DS; Rhodes JC
    Eukaryot Cell; 2005 Dec; 4(12):1982-9. PubMed ID: 16339716
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Suppression of Aflatoxin Biosynthesis in Aspergillus flavus by 2-Phenylethanol Is Associated with Stimulated Growth and Decreased Degradation of Branched-Chain Amino Acids.
    Chang PK; Hua SS; Sarreal SB; Li RW
    Toxins (Basel); 2015 Sep; 7(10):3887-902. PubMed ID: 26404375
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Sko1p repressor and Gcn4p activator antagonistically modulate stress-regulated transcription in Saccharomyces cerevisiae.
    Pascual-Ahuir A; Serrano R; Proft M
    Mol Cell Biol; 2001 Jan; 21(1):16-25. PubMed ID: 11113177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Divergent targets of Aspergillus fumigatus AcuK and AcuM transcription factors during growth in vitro versus invasive disease.
    Pongpom M; Liu H; Xu W; Snarr BD; Sheppard DC; Mitchell AP; Filler SG
    Infect Immun; 2015 Mar; 83(3):923-33. PubMed ID: 25534941
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pathogenicity of Aspergillus fumigatus mutants assessed in Galleria mellonella matches that in mice.
    Slater JL; Gregson L; Denning DW; Warn PA
    Med Mycol; 2011 Apr; 49 Suppl 1():S107-13. PubMed ID: 20950221
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activator Gcn4p and Cyc8p/Tup1p are interdependent for promoter occupancy at ARG1 in vivo.
    Kim SJ; Swanson MJ; Qiu H; Govind CK; Hinnebusch AG
    Mol Cell Biol; 2005 Dec; 25(24):11171-83. PubMed ID: 16314536
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The putative flavin carrier family FlcA-C is important for Aspergillus fumigatus virulence.
    de Castro PA; Chiaratto J; Morais ER; Dos Reis TF; Mitchell TK; Brown NA; Goldman GH
    Virulence; 2017 Aug; 8(6):797-809. PubMed ID: 27652896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expanding the Toolbox for Functional Genomics in
    Favilla LD; Herman TS; Goersch CDS; de Andrade RV; Felipe MSS; Bocca AL; Fernandes L
    J Fungi (Basel); 2023 Feb; 9(2):. PubMed ID: 36836338
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polaramycin B, and not physical interaction, is the signal that rewires fungal metabolism in the Streptomyces-Aspergillus interaction.
    Berger H; Bacher M; Labuda R; Eppel IM; Bayer F; Sulyok M; Gasparotto E; Zehetbauer F; Doppler M; Gratzl H; Strauss J
    Environ Microbiol; 2022 Oct; 24(10):4899-4914. PubMed ID: 35848075
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases.
    Guerriero G; Hausman JF; Strauss J; Ertan H; Siddiqui KS
    Plant Sci; 2015 May; 234():180-93. PubMed ID: 25804821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The temporal dynamics of differential gene expression in Aspergillus fumigatus interacting with human immature dendritic cells in vitro.
    Morton CO; Varga JJ; Hornbach A; Mezger M; Sennefelder H; Kneitz S; Kurzai O; Krappmann S; Einsele H; Nierman WC; Rogers TR; Loeffler J
    PLoS One; 2011 Jan; 6(1):e16016. PubMed ID: 21264256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aspergillus fumigatus metabolism: clues to mechanisms of in vivo fungal growth and virulence.
    Willger SD; Grahl N; Cramer RA
    Med Mycol; 2009; 47 Suppl 1(Suppl 1):S72-9. PubMed ID: 19253141
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptional profiling of cross pathway control in Neurospora crassa and comparative analysis of the Gcn4 and CPC1 regulons.
    Tian C; Kasuga T; Sachs MS; Glass NL
    Eukaryot Cell; 2007 Jun; 6(6):1018-29. PubMed ID: 17449655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.