These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30408959)

  • 1. Application of Bioactivity Profile-Based Fingerprints for Building Machine Learning Models.
    Sturm N; Sun J; Vandriessche Y; Mayr A; Klambauer G; Carlsson L; Engkvist O; Chen H
    J Chem Inf Model; 2019 Mar; 59(3):962-972. PubMed ID: 30408959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining structural and bioactivity-based fingerprints improves prediction performance and scaffold hopping capability.
    Laufkötter O; Sturm N; Bajorath J; Chen H; Engkvist O
    J Cheminform; 2019 Aug; 11(1):54. PubMed ID: 31396716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Public Domain HTS Fingerprints: Design and Evaluation of Compound Bioactivity Profiles from PubChem's Bioassay Repository.
    Helal KY; Maciejewski M; Gregori-Puigjané E; Glick M; Wassermann AM
    J Chem Inf Model; 2016 Feb; 56(2):390-8. PubMed ID: 26898267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving virtual screening predictive accuracy of Human kallikrein 5 inhibitors using machine learning models.
    Fang X; Bagui S; Bagui S
    Comput Biol Chem; 2017 Aug; 69():110-119. PubMed ID: 28601761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potency-directed similarity searching using support vector machines.
    Wassermann AM; Heikamp K; Bajorath J
    Chem Biol Drug Des; 2011 Jan; 77(1):30-8. PubMed ID: 21114788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using information from historical high-throughput screens to predict active compounds.
    Riniker S; Wang Y; Jenkins JL; Landrum GA
    J Chem Inf Model; 2014 Jul; 54(7):1880-91. PubMed ID: 24933016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rethinking molecular similarity: comparing compounds on the basis of biological activity.
    Petrone PM; Simms B; Nigsch F; Lounkine E; Kutchukian P; Cornett A; Deng Z; Davies JW; Jenkins JL; Glick M
    ACS Chem Biol; 2012 Aug; 7(8):1399-409. PubMed ID: 22594495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using machine learning methods to predict experimental high-throughput screening data.
    Mballo C; Makarenkov V
    Comb Chem High Throughput Screen; 2010 Jun; 13(5):430-41. PubMed ID: 20236062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate Hit Estimation for Iterative Screening Using Venn-ABERS Predictors.
    Buendia R; Kogej T; Engkvist O; Carlsson L; Linusson H; Johansson U; Toccaceli P; Ahlberg E
    J Chem Inf Model; 2019 Mar; 59(3):1230-1237. PubMed ID: 30726080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data-Driven Derivation of an "Informer Compound Set" for Improved Selection of Active Compounds in High-Throughput Screening.
    Paricharak S; IJzerman AP; Jenkins JL; Bender A; Nigsch F
    J Chem Inf Model; 2016 Sep; 56(9):1622-30. PubMed ID: 27487177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive classifier models built from natural products with antimalarial bioactivity using machine learning approach.
    Egieyeh S; Syce J; Malan SF; Christoffels A
    PLoS One; 2018; 13(9):e0204644. PubMed ID: 30265702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of the negative-positive ratio and screening database size on the performance of machine learning-based virtual screening.
    Kurczab R; Bojarski AJ
    PLoS One; 2017; 12(4):e0175410. PubMed ID: 28384344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual screening by a new Clustering-based Weighted Similarity Extreme Learning Machine approach.
    Pasupa K; Kudisthalert W
    PLoS One; 2018; 13(4):e0195478. PubMed ID: 29652912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning Approaches Toward Building Predictive Models for Small Molecule Modulators of miRNA and Its Utility in Virtual Screening of Molecular Databases.
    Periwal V; Scaria V
    Methods Mol Biol; 2017; 1517():155-168. PubMed ID: 27924481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive modeling of estrogen receptor agonism, antagonism, and binding activities using machine- and deep-learning approaches.
    Ciallella HL; Russo DP; Aleksunes LM; Grimm FA; Zhu H
    Lab Invest; 2021 Apr; 101(4):490-502. PubMed ID: 32778734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Orthosteric and Allosteric Regulations on Cannabinoid Receptors Using Supervised Machine Learning Classifiers.
    Bian Y; Jing Y; Wang L; Ma S; Jun JJ; Xie XQ
    Mol Pharm; 2019 Jun; 16(6):2605-2615. PubMed ID: 31013097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target specific compound identification using a support vector machine.
    Plewczynski D; von Grotthuss M; Spieser SA; Rychlewski L; Wyrwicz LS; Ginalski K; Koch U
    Comb Chem High Throughput Screen; 2007 Mar; 10(3):189-96. PubMed ID: 17346118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Luciferase Advisor: High-Accuracy Model To Flag False Positive Hits in Luciferase HTS Assays.
    Ghosh D; Koch U; Hadian K; Sattler M; Tetko IV
    J Chem Inf Model; 2018 May; 58(5):933-942. PubMed ID: 29667823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Analysis and In silico Predictive Modeling for Inhibitors of PhoP Regulon in S. typhi on High-Throughput Screening Bioassay Dataset.
    Kaur H; Ahmad M; Scaria V
    Interdiscip Sci; 2016 Mar; 8(1):95-101. PubMed ID: 26298582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of support vector machine to three-dimensional shape-based virtual screening using comprehensive three-dimensional molecular shape overlay with known inhibitors.
    Sato T; Yuki H; Takaya D; Sasaki S; Tanaka A; Honma T
    J Chem Inf Model; 2012 Apr; 52(4):1015-26. PubMed ID: 22424085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.