These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 30408959)
21. Development of CYP3A4 inhibition models: comparisons of machine-learning techniques and molecular descriptors. Arimoto R; Prasad MA; Gifford EM J Biomol Screen; 2005 Apr; 10(3):197-205. PubMed ID: 15809315 [TBL] [Abstract][Full Text] [Related]
22. Predictions of BuChE inhibitors using support vector machine and naive Bayesian classification techniques in drug discovery. Fang J; Yang R; Gao L; Zhou D; Yang S; Liu AL; Du GH J Chem Inf Model; 2013 Nov; 53(11):3009-20. PubMed ID: 24144102 [TBL] [Abstract][Full Text] [Related]
23. Predicting Organ Toxicity Using in Vitro Bioactivity Data and Chemical Structure. Liu J; Patlewicz G; Williams AJ; Thomas RS; Shah I Chem Res Toxicol; 2017 Nov; 30(11):2046-2059. PubMed ID: 28768096 [TBL] [Abstract][Full Text] [Related]
24. Changing the HTS Paradigm: AI-Driven Iterative Screening for Hit Finding. Dreiman GHS; Bictash M; Fish PV; Griffin L; Svensson F SLAS Discov; 2021 Feb; 26(2):257-262. PubMed ID: 32808550 [TBL] [Abstract][Full Text] [Related]
25. Experimental design strategy: weak reinforcement leads to increased hit rates and enhanced chemical diversity. Maciejewski M; Wassermann AM; Glick M; Lounkine E J Chem Inf Model; 2015 May; 55(5):956-62. PubMed ID: 25915687 [TBL] [Abstract][Full Text] [Related]
27. All-Assay-Max2 pQSAR: Activity Predictions as Accurate as Four-Concentration IC Martin EJ; Polyakov VR; Zhu XW; Tian L; Mukherjee P; Liu X J Chem Inf Model; 2019 Oct; 59(10):4450-4459. PubMed ID: 31518124 [TBL] [Abstract][Full Text] [Related]
28. A big data approach with artificial neural network and molecular similarity for chemical data mining and endocrine disruption prediction. Paulose R; Jegatheesan K; Balakrishnan GS Indian J Pharmacol; 2018; 50(4):169-176. PubMed ID: 30505052 [TBL] [Abstract][Full Text] [Related]
29. Computational chemogenomics: is it more than inductive transfer? Brown JB; Okuno Y; Marcou G; Varnek A; Horvath D J Comput Aided Mol Des; 2014 Jun; 28(6):597-618. PubMed ID: 24771144 [TBL] [Abstract][Full Text] [Related]
30. Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing. Lim H; Poleksic A; Yao Y; Tong H; He D; Zhuang L; Meng P; Xie L PLoS Comput Biol; 2016 Oct; 12(10):e1005135. PubMed ID: 27716836 [TBL] [Abstract][Full Text] [Related]
31. Design of Natural-Product-Inspired Multitarget Ligands by Machine Learning. Grisoni F; Merk D; Friedrich L; Schneider G ChemMedChem; 2019 Jun; 14(12):1129-1134. PubMed ID: 30973672 [TBL] [Abstract][Full Text] [Related]
32. Practical Model Selection for Prospective Virtual Screening. Liu S; Alnammi M; Ericksen SS; Voter AF; Ananiev GE; Keck JL; Hoffmann FM; Wildman SA; Gitter A J Chem Inf Model; 2019 Jan; 59(1):282-293. PubMed ID: 30500183 [TBL] [Abstract][Full Text] [Related]
33. Multiple machine learning based descriptive and predictive workflow for the identification of potential PTP1B inhibitors. Chandra S; Pandey J; Tamrakar AK; Siddiqi MI J Mol Graph Model; 2017 Jan; 71():242-256. PubMed ID: 28006676 [TBL] [Abstract][Full Text] [Related]
34. Structure-based drug screening and ligand-based drug screening with machine learning. Fukunishi Y Comb Chem High Throughput Screen; 2009 May; 12(4):397-408. PubMed ID: 19442067 [TBL] [Abstract][Full Text] [Related]
35. PAIN(S) relievers for medicinal chemists: how computational methods can assist in hit evaluation. Stork C; Kirchmair J Future Med Chem; 2018 Jul; 10(13):1533-1535. PubMed ID: 29956552 [No Abstract] [Full Text] [Related]
36. Machine learning and drug discovery for neglected tropical diseases. Breslin W; Pham D BMC Bioinformatics; 2023 Apr; 24(1):165. PubMed ID: 37095460 [TBL] [Abstract][Full Text] [Related]
37. How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space. Koutsoukas A; Paricharak S; Galloway WR; Spring DR; Ijzerman AP; Glen RC; Marcus D; Bender A J Chem Inf Model; 2014 Jan; 54(1):230-42. PubMed ID: 24289493 [TBL] [Abstract][Full Text] [Related]
38. ChemBioSim: Enhancing Conformal Prediction of In Vivo Toxicity by Use of Predicted Bioactivities. Garcia de Lomana M; Morger A; Norinder U; Buesen R; Landsiedel R; Volkamer A; Kirchmair J; Mathea M J Chem Inf Model; 2021 Jul; 61(7):3255-3272. PubMed ID: 34153183 [TBL] [Abstract][Full Text] [Related]
39. Machine learning classification can reduce false positives in structure-based virtual screening. Adeshina YO; Deeds EJ; Karanicolas J Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18477-18488. PubMed ID: 32669436 [TBL] [Abstract][Full Text] [Related]
40. GPU accelerated support vector machines for mining high-throughput screening data. Liao Q; Wang J; Webster Y; Watson IA J Chem Inf Model; 2009 Dec; 49(12):2718-25. PubMed ID: 19961205 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]