These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30409003)

  • 1. Transport of particles driven by the traveling obstacle arrays.
    Zhu WJ; Zhong WR; Xiong JW; Ai BQ
    J Chem Phys; 2018 Nov; 149(17):174906. PubMed ID: 30409003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow and clogging of particles in shaking random obstacles.
    Ai BQ; Meng FH; He YL; Zhang XM
    Soft Matter; 2019 Apr; 15(16):3443-3450. PubMed ID: 30942807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rectification of chiral active particles driven by transversal temperature difference.
    Ai BQ; Li JJ; Li ZQ; Xiong JW; He YF
    J Chem Phys; 2019 May; 150(18):184905. PubMed ID: 31091931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of active ellipsoidal particles in ratchet potentials.
    Ai BQ; Wu JC
    J Chem Phys; 2014 Mar; 140(9):094103. PubMed ID: 24606349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport and diffusion properties of Brownian particles powered by a rotating wheel.
    Ai BQ
    Phys Rev E; 2017 Jul; 96(1-1):012131. PubMed ID: 29347219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chirality separation of mixed chiral microswimmers in a periodic channel.
    Ai BQ; He YF; Zhong WR
    Soft Matter; 2015 May; 11(19):3852-9. PubMed ID: 25864888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport and diffusion of paramagnetic ellipsoidal particles in a rotating magnetic field.
    Liao JJ; Zhu WJ; Ai BQ
    Phys Rev E; 2018 Jun; 97(6-1):062151. PubMed ID: 30011563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current reversals of active particles in time-oscillating potentials.
    Liao JJ; Huang XQ; Ai BQ
    Soft Matter; 2018 Oct; 14(38):7850-7858. PubMed ID: 30209474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of active particles induced by wedge-shaped barriers in straight channels with hard and soft walls.
    Wu JC; Lv K; Zhao WW; Ai BQ
    Chaos; 2018 Dec; 28(12):123102. PubMed ID: 30599529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ratchet transport powered by chiral active particles.
    Ai BQ
    Sci Rep; 2016 Jan; 6():18740. PubMed ID: 26795952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rectification and separation of mixtures of active and passive particles driven by temperature difference.
    Zhu WJ; Li TC; Zhong WR; Ai BQ
    J Chem Phys; 2020 May; 152(18):184903. PubMed ID: 32414246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of alignment active particles in funnel structures.
    Zhu WJ; Li FG; Ai BQ
    Eur Phys J E Soft Matter; 2017 May; 40(5):59. PubMed ID: 28527038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rectification and diffusion of self-propelled particles in a two-dimensional corrugated channel.
    Ai BQ; Chen QY; He YF; Li FG; Zhong WR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062129. PubMed ID: 24483408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of self-propelled particles across a porous medium: trapping, clogging, and the Matthew effect.
    Shi SJ; Li HS; Feng GQ; Tian WD; Chen K
    Phys Chem Chem Phys; 2020 Jul; 22(25):14052-14060. PubMed ID: 32568323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Driven transport of active particles through arrays of symmetric obstacles.
    Nayak S; Das S; Bag P; Debnath T; Ghosh PK
    J Chem Phys; 2023 Oct; 159(16):. PubMed ID: 37877479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate.
    Sándor C; Libál A; Reichhardt C; Reichhardt CJ
    Phys Rev E; 2017 Jan; 95(1-1):012607. PubMed ID: 28208499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion, subdiffusion, and trapping of active particles in heterogeneous media.
    Chepizhko O; Peruani F
    Phys Rev Lett; 2013 Oct; 111(16):160604. PubMed ID: 24182247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective diffusivity through arrays of obstacles under zero-mean periodic driving forces.
    Alvarez-Ramirez J; Dagdug L; Valdes-Parada FJ
    J Chem Phys; 2012 Oct; 137(15):154109. PubMed ID: 23083150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clustering-induced velocity-reversals of active colloids mixed with passive particles.
    Hauke F; Löwen H; Liebchen B
    J Chem Phys; 2020 Jan; 152(1):014903. PubMed ID: 31914737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active Brownian particles moving in a random Lorentz gas.
    Zeitz M; Wolff K; Stark H
    Eur Phys J E Soft Matter; 2017 Feb; 40(2):23. PubMed ID: 28236113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.