BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30409065)

  • 1. Adaptations from the prosthetic and intact limb during standing on a sway-referenced support surface for transtibial prosthesis users.
    Rusaw DF
    Disabil Rehabil Assist Technol; 2019 Oct; 14(7):682-691. PubMed ID: 30409065
    [No Abstract]   [Full Text] [Related]  

  • 2. Validation of the Inverted Pendulum Model in standing for transtibial prosthesis users.
    Rusaw DF; Ramstrand S
    Clin Biomech (Bristol, Avon); 2016 Jan; 31():100-6. PubMed ID: 26472063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a theoretical model for upright postural control in lower limb prosthesis users.
    Rusaw DF; Alinder R; Edholm S; Hallstedt KLL; Runesson J; Barnett CT
    Sci Rep; 2021 Apr; 11(1):8263. PubMed ID: 33859266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of prosthetic foot stiffness on transtibial amputee walking mechanics and balance control during turning.
    Shell CE; Segal AD; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2017 Nov; 49():56-63. PubMed ID: 28869812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Balance Control (DBC) in lower leg amputee subjects; contribution of the regulatory activity of the prosthesis side.
    Nederhand MJ; Van Asseldonk EH; van der Kooij H; Rietman HS
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):40-5. PubMed ID: 21889241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The validity of forceplate data as a measure of rapid and targeted volitional movements of the centre of mass in transtibial prosthesis users.
    Rusaw DF
    Disabil Rehabil Assist Technol; 2017 Oct; 12(7):686-693. PubMed ID: 27653156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can vibratory feedback be used to improve postural stability in persons with transtibial limb loss?
    Rusaw D; Hagberg K; Nolan L; Ramstrand N
    J Rehabil Res Dev; 2012; 49(8):1239-54. PubMed ID: 23341316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microprocessor prosthetic ankles: comparative biomechanical evaluation of people with transtibial traumatic amputation during standing on level ground and slope.
    Thomas-Pohl M; Villa C; Davot J; Bonnet X; Facione J; Lapeyre E; Bascou J; Pillet H
    Disabil Rehabil Assist Technol; 2021 Jan; 16(1):17-26. PubMed ID: 31535903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lower-limb amputee recovery response to an imposed error in mediolateral foot placement.
    Segal AD; Klute GK
    J Biomech; 2014 Sep; 47(12):2911-8. PubMed ID: 25145315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased alertness, better than posture prioritization, explains dual-task performance in prosthesis users and controls under increasing postural and cognitive challenge.
    Howard CL; Perry B; Chow JW; Wallace C; Stokic DS
    Exp Brain Res; 2017 Nov; 235(11):3527-3539. PubMed ID: 28861592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower-limb amputee ankle and hip kinetic response to an imposed error in mediolateral foot placement.
    Segal AD; Shofer JB; Klute GK
    J Biomech; 2015 Nov; 48(15):3982-3988. PubMed ID: 26475221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individuals with transtibial limb loss use interlimb force asymmetries to maintain multi-directional reactive balance control.
    Bolger D; Ting LH; Sawers A
    Clin Biomech (Bristol, Avon); 2014 Nov; 29(9):1039-47. PubMed ID: 25200883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuromuscular adaptations and sensorimotor integration following a unilateral transfemoral amputation.
    Claret CR; Herget GW; Kouba L; Wiest D; Adler J; von Tscharner V; Stieglitz T; Pasluosta C
    J Neuroeng Rehabil; 2019 Sep; 16(1):115. PubMed ID: 31521190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait adaptations of transfemoral prosthesis users across multiple walking tasks.
    Kendell C; Lemaire ED; Kofman J; Dudek N
    Prosthet Orthot Int; 2016 Feb; 40(1):89-95. PubMed ID: 25715381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postural stability characteristics of transtibial amputees wearing different prosthetic foot types when standing on various support surfaces.
    Arifin N; Abu Osman NA; Ali S; Gholizadeh H; Abas WA
    ScientificWorldJournal; 2014; 2014():856279. PubMed ID: 25003155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation to altered balance conditions in unilateral amputees due to atherosclerosis: a randomized controlled study.
    Mayer A; Tihanyi J; Bretz K; Csende Z; Bretz E; Horváth M
    BMC Musculoskelet Disord; 2011 May; 12():118. PubMed ID: 21619618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Standing on slopes - how current microprocessor-controlled prosthetic feet support transtibial and transfemoral amputees in an everyday task.
    Ernst M; Altenburg B; Bellmann M; Schmalz T
    J Neuroeng Rehabil; 2017 Nov; 14(1):117. PubMed ID: 29145876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability of kinetic variables during gait in unilateral transtibial amputees.
    Svoboda Z; Janura M; Cabell L; Elfmark M
    Prosthet Orthot Int; 2012 Jun; 36(2):225-30. PubMed ID: 22440580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unilateral transtibial prosthesis users load their intact limb more than their prosthetic limb during sit-to-stand, squatting, and lifting.
    Teater RH; Wolf DN; McDonald KA; Zelik KE
    Clin Biomech (Bristol, Avon); 2023 Aug; 108():106041. PubMed ID: 37478554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal kinematic and kinetic adaptations to obstacle crossing in recent lower limb amputees.
    Barnett CT; Polman RC; Vanicek N
    Prosthet Orthot Int; 2014 Dec; 38(6):437-46. PubMed ID: 24150931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.