BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 30409083)

  • 1. Therapeutic targeting of transcriptional cyclin-dependent kinases.
    Galbraith MD; Bender H; Espinosa JM
    Transcription; 2019 Apr; 10(2):118-136. PubMed ID: 30409083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cdk7: a kinase at the core of transcription and in the crosshairs of cancer drug discovery.
    Fisher RP
    Transcription; 2019 Apr; 10(2):47-56. PubMed ID: 30488763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II.
    Lu H; Yu D; Hansen AS; Ganguly S; Liu R; Heckert A; Darzacq X; Zhou Q
    Nature; 2018 Jun; 558(7709):318-323. PubMed ID: 29849146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Therapeutic Targeting of the General RNA Polymerase II Transcription Machinery.
    Martin RD; Hébert TE; Tanny JC
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32397434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro.
    Wada T; Takagi T; Yamaguchi Y; Watanabe D; Handa H
    EMBO J; 1998 Dec; 17(24):7395-403. PubMed ID: 9857195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissecting the Pol II transcription cycle and derailing cancer with CDK inhibitors.
    Parua PK; Fisher RP
    Nat Chem Biol; 2020 Jul; 16(7):716-724. PubMed ID: 32572259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CDK-9/cyclin T (P-TEFb) is required in two postinitiation pathways for transcription in the C. elegans embryo.
    Shim EY; Walker AK; Shi Y; Blackwell TK
    Genes Dev; 2002 Aug; 16(16):2135-46. PubMed ID: 12183367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CDK7 inhibitors as anticancer drugs.
    Sava GP; Fan H; Coombes RC; Buluwela L; Ali S
    Cancer Metastasis Rev; 2020 Sep; 39(3):805-823. PubMed ID: 32385714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small Molecule CDK Inhibitors for the Therapeutic Management of Cancer.
    Goel B; Tripathi N; Bhardwaj N; Jain SK
    Curr Top Med Chem; 2020; 20(17):1535-1563. PubMed ID: 32416692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting Cyclin-Dependent Kinases and Cell Cycle Progression in Human Cancers.
    Santo L; Siu KT; Raje N
    Semin Oncol; 2015 Dec; 42(6):788-800. PubMed ID: 26615126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ICEC0942, an Orally Bioavailable Selective Inhibitor of CDK7 for Cancer Treatment.
    Patel H; Periyasamy M; Sava GP; Bondke A; Slafer BW; Kroll SHB; Barbazanges M; Starkey R; Ottaviani S; Harrod A; Aboagye EO; Buluwela L; Fuchter MJ; Barrett AGM; Coombes RC; Ali S
    Mol Cancer Ther; 2018 Jun; 17(6):1156-1166. PubMed ID: 29545334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances on CDK inhibitors: An insight by means of in silico methods.
    Tutone M; Almerico AM
    Eur J Med Chem; 2017 Dec; 142():300-315. PubMed ID: 28802482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting cyclin-dependent kinases in anti-neoplastic therapy.
    Bruyère C; Meijer L
    Curr Opin Cell Biol; 2013 Dec; 25(6):772-9. PubMed ID: 24011867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription associated cyclin-dependent kinases as therapeutic targets for prostate cancer.
    Constantin TA; Greenland KK; Varela-Carver A; Bevan CL
    Oncogene; 2022 Jun; 41(24):3303-3315. PubMed ID: 35568739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual action of the inhibitors of cyclin-dependent kinases: targeting of the cell-cycle progression and activation of wild-type p53 protein.
    Wesierska-Gadek J; Schmid G
    Expert Opin Investig Drugs; 2006 Jan; 15(1):23-38. PubMed ID: 16370931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of repression: CTD analogs and PIE-1 inhibit transcriptional elongation by P-TEFb.
    Zhang F; Barboric M; Blackwell TK; Peterlin BM
    Genes Dev; 2003 Mar; 17(6):748-58. PubMed ID: 12651893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 5-Substituted 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2)H-pyrazolo[4,3-d]pyrimidines with anti-proliferative activity as potent and selective inhibitors of cyclin-dependent kinases.
    Vymětalová L; Havlíček L; Šturc A; Skrášková Z; Jorda R; Pospíšil T; Strnad M; Kryštof V
    Eur J Med Chem; 2016 Mar; 110():291-301. PubMed ID: 26851505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitors of cyclin-dependent kinases as cancer therapeutics.
    Whittaker SR; Mallinger A; Workman P; Clarke PA
    Pharmacol Ther; 2017 May; 173():83-105. PubMed ID: 28174091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CDK9: a signaling hub for transcriptional control.
    Bacon CW; D'Orso I
    Transcription; 2019 Apr; 10(2):57-75. PubMed ID: 30227759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent progress in development of cyclin-dependent kinase 7 inhibitors for cancer therapy.
    Liang H; Du J; Elhassan RM; Hou X; Fang H
    Expert Opin Investig Drugs; 2021 Jan; 30(1):61-76. PubMed ID: 33183110
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 18.