These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 30409183)

  • 1. Dissection of the molecular bases of genotype x environment interactions: a study of phenotypic plasticity of Saccharomyces cerevisiae in grape juices.
    Peltier E; Sharma V; Martí Raga M; Roncoroni M; Bernard M; Jiranek V; Gibon Y; Marullo P
    BMC Genomics; 2018 Nov; 19(1):772. PubMed ID: 30409183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QTL dissection of Lag phase in wine fermentation reveals a new translocation responsible for Saccharomyces cerevisiae adaptation to sulfite.
    Zimmer A; Durand C; Loira N; Durrens P; Sherman DJ; Marullo P
    PLoS One; 2014; 9(1):e86298. PubMed ID: 24489712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation.
    Eder M; Sanchez I; Brice C; Camarasa C; Legras JL; Dequin S
    BMC Genomics; 2018 Mar; 19(1):166. PubMed ID: 29490607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QTL mapping: an innovative method for investigating the genetic determinism of yeast-bacteria interactions in wine.
    Bartle L; Peltier E; Sundstrom JF; Sumby K; Mitchell JG; Jiranek V; Marullo P
    Appl Microbiol Biotechnol; 2021 Jun; 105(12):5053-5066. PubMed ID: 34106310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential adaptation to multi-stressed conditions of wine fermentation revealed by variations in yeast regulatory networks.
    Brion C; Ambroset C; Sanchez I; Legras JL; Blondin B
    BMC Genomics; 2013 Oct; 14():681. PubMed ID: 24094006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecological and Genetic Barriers Differentiate Natural Populations of Saccharomyces cerevisiae.
    Clowers KJ; Heilberger J; Piotrowski JS; Will JL; Gasch AP
    Mol Biol Evol; 2015 Sep; 32(9):2317-27. PubMed ID: 25953281
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Varela C; Bartel C; Roach M; Borneman A; Curtin C
    Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30552183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single QTL mapping and nucleotide-level resolution of a physiologic trait in wine Saccharomyces cerevisiae strains.
    Marullo P; Aigle M; Bely M; Masneuf-Pomarède I; Durrens P; Dubourdieu D; Yvert G
    FEMS Yeast Res; 2007 Sep; 7(6):941-52. PubMed ID: 17537182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disentangling the genetic bases of Saccharomyces cerevisiae nitrogen consumption and adaptation to low nitrogen environments in wine fermentation.
    Kessi-Pérez EI; Molinet J; Martínez C
    Biol Res; 2020 Jan; 53(1):2. PubMed ID: 31918759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolving the Complex Genetic Basis of Phenotypic Variation and Variability of Cellular Growth.
    Ziv N; Shuster BM; Siegal ML; Gresham D
    Genetics; 2017 Jul; 206(3):1645-1657. PubMed ID: 28495957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotechnological impact of stress response on wine yeast.
    Matallana E; Aranda A
    Lett Appl Microbiol; 2017 Feb; 64(2):103-110. PubMed ID: 27714822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic Causes of Phenotypic Adaptation to the Second Fermentation of Sparkling Wines in
    Martí-Raga M; Peltier E; Mas A; Beltran G; Marullo P
    G3 (Bethesda); 2017 Feb; 7(2):399-412. PubMed ID: 27903630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural allelic variations of Saccharomyces cerevisiae impact stuck fermentation due to the combined effect of ethanol and temperature; a QTL-mapping study.
    Marullo P; Durrens P; Peltier E; Bernard M; Mansour C; Dubourdieu D
    BMC Genomics; 2019 Aug; 20(1):680. PubMed ID: 31462217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wine yeast phenomics: A standardized fermentation method for assessing quantitative traits of Saccharomyces cerevisiae strains in enological conditions.
    Peltier E; Bernard M; Trujillo M; Prodhomme D; Barbe JC; Gibon Y; Marullo P
    PLoS One; 2018; 13(1):e0190094. PubMed ID: 29351285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic Regulation of Phenotypic Plasticity and Canalisation in Yeast Growth.
    Yadav A; Dhole K; Sinha H
    PLoS One; 2016; 11(9):e0162326. PubMed ID: 27611930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae.
    García-Ríos E; Morard M; Parts L; Liti G; Guillamón JM
    BMC Genomics; 2017 Feb; 18(1):159. PubMed ID: 28196526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of
    Schmidt SA; Kolouchova R; Forgan AH; Borneman AR
    G3 (Bethesda); 2020 Feb; 10(2):591-603. PubMed ID: 31792006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new chromosomal rearrangement improves the adaptation of wine yeasts to sulfite.
    García-Ríos E; Nuévalos M; Barrio E; Puig S; Guillamón JM
    Environ Microbiol; 2019 May; 21(5):1771-1781. PubMed ID: 30859719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saccharomyces cerevisiae Gene Expression during Fermentation of Pinot Noir Wines at an Industrially Relevant Scale.
    Reiter T; Montpetit R; Byer S; Frias I; Leon E; Viano R; Mcloughlin M; Halligan T; Hernandez D; Runnebaum R; Montpetit B
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741633
    [No Abstract]   [Full Text] [Related]  

  • 20. Impacts of variations in elemental nutrient concentration of Chardonnay musts on Saccharomyces cerevisiae fermentation kinetics and wine composition.
    Schmidt SA; Dillon S; Kolouchova R; Henschke PA; Chambers PJ
    Appl Microbiol Biotechnol; 2011 Jul; 91(2):365-75. PubMed ID: 21476141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.