BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 30409230)

  • 1. Human tissue-specific MSCs demonstrate differential mitochondria transfer abilities that may determine their regenerative abilities.
    Paliwal S; Chaudhuri R; Agrawal A; Mohanty S
    Stem Cell Res Ther; 2018 Nov; 9(1):298. PubMed ID: 30409230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique molecular signatures influencing the biological function and fate of post-natal stem cells isolated from different sources.
    Abu Kasim NH; Govindasamy V; Gnanasegaran N; Musa S; Pradeep PJ; Srijaya TC; Aziz ZA
    J Tissue Eng Regen Med; 2015 Dec; 9(12):E252-66. PubMed ID: 23229816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton's jelly of the umbilical cord.
    Zajdel A; Kałucka M; Kokoszka-Mikołaj E; Wilczok A
    Acta Biochim Pol; 2017; 64(2):365-369. PubMed ID: 28600911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential reduction of reactive oxygen species by human tissuespecific mesenchymal stem cells from different donors under oxidative stress.
    Paliwal S; Kakkar A; Sharma R; Airan B; Mohanty S
    J Biosci; 2017 Sep; 42(3):373-382. PubMed ID: 29358551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PARKIN overexpression in human mesenchymal stromal cells from Wharton's jelly suppresses 6-hydroxydopamine-induced apoptosis: Potential therapeutic strategy in Parkinson's disease.
    Bonilla-Porras AR; Arevalo-Arbelaez A; Alzate-Restrepo JF; Velez-Pardo C; Jimenez-Del-Rio M
    Cytotherapy; 2018 Jan; 20(1):45-61. PubMed ID: 29079356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy Metabolism Analysis of Three Different Mesenchymal Stem Cell Populations of Umbilical Cord Under Normal and Pathologic Conditions.
    Russo E; Lee JY; Nguyen H; Corrao S; Anzalone R; La Rocca G; Borlongan CV
    Stem Cell Rev Rep; 2020 Jun; 16(3):585-595. PubMed ID: 32185666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Analyses of Immunosuppressive Characteristics of Bone-Marrow, Wharton's Jelly, and Adipose Tissue-Derived Human Mesenchymal Stem Cells.
    Karaöz E; Çetinalp Demircan P; Erman G; Güngörürler E; Eker Sarıboyacı A
    Turk J Haematol; 2017 Aug; 34(3):213-225. PubMed ID: 27610554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Wharton's jelly mesenchymal stem cells: properties, isolation and clinical applications.
    Borys-Wójcik S; Brązert M; Jankowski M; Ożegowska K; Chermuła B; Piotrowska-Kempisty H; Bukowska D; Antosik P; Pawelczyk L; Nowicki M; Jeseta M; Kempisty B
    J Biol Regul Homeost Agents; 2019 Jan-Feb,; 33(1):119-123. PubMed ID: 30729769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comparative Analysis of Multipotent Mesenchymal Stromal Cells derived from Different Sources, with a Focus on Neuroregenerative Potential.
    Petrenko Y; Vackova I; Kekulova K; Chudickova M; Koci Z; Turnovcova K; Kupcova Skalnikova H; Vodicka P; Kubinova S
    Sci Rep; 2020 Mar; 10(1):4290. PubMed ID: 32152403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial Transfer of Wharton's Jelly Mesenchymal Stem Cells Eliminates Mutation Burden and Rescues Mitochondrial Bioenergetics in Rotenone-Stressed MELAS Fibroblasts.
    Lin TK; Chen SD; Chuang YC; Lan MY; Chuang JH; Wang PW; Hsu TY; Wang FS; Tsai MH; Huang ST; Wang XW; Tsai PC; Lin HY; Liou CW
    Oxid Med Cell Longev; 2019; 2019():9537504. PubMed ID: 31249652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wharton's Jelly Derived-Mesenchymal Stem Cells: Isolation and Characterization.
    Ranjbaran H; Abediankenari S; Mohammadi M; Jafari N; Khalilian A; Rahmani Z; Momeninezhad Amiri M; Ebrahimi P
    Acta Med Iran; 2018 Jan; 56(1):28-33. PubMed ID: 29436792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transplantation of human bone marrow mesenchymal stromal cells reduces liver fibrosis more effectively than Wharton's jelly mesenchymal stromal cells.
    Rengasamy M; Singh G; Fakharuzi NA; Siddikuzzaman ; Balasubramanian S; Swamynathan P; Thej C; Sasidharan G; Gupta PK; Das AK; Rahman AZA; Fakiruddin KS; Nian LM; Zakaria Z; Majumdar AS
    Stem Cell Res Ther; 2017 Jun; 8(1):143. PubMed ID: 28610623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between adult and foetal adnexa derived equine post-natal mesenchymal stem cells.
    Merlo B; Teti G; Lanci A; Burk J; Mazzotti E; Falconi M; Iacono E
    BMC Vet Res; 2019 Aug; 15(1):277. PubMed ID: 31375144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton's jelly as sources of cell immunomodulatory therapy.
    Wang Q; Yang Q; Wang Z; Tong H; Ma L; Zhang Y; Shan F; Meng Y; Yuan Z
    Hum Vaccin Immunother; 2016; 12(1):85-96. PubMed ID: 26186552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Higher propensity of Wharton's jelly derived mesenchymal stromal cells towards neuronal lineage in comparison to those derived from adipose and bone marrow.
    Balasubramanian S; Thej C; Venugopal P; Priya N; Zakaria Z; Sundarraj S; Majumdar AS
    Cell Biol Int; 2013 May; 37(5):507-15. PubMed ID: 23418097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human chorionic-plate-derived mesenchymal stem cells and Wharton's jelly-derived mesenchymal stem cells: a comparative analysis of their potential as placenta-derived stem cells.
    Kim MJ; Shin KS; Jeon JH; Lee DR; Shim SH; Kim JK; Cha DH; Yoon TK; Kim GJ
    Cell Tissue Res; 2011 Oct; 346(1):53-64. PubMed ID: 21987220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesenchymal Stem Cells from Wharton's Jelly and Amniotic Fluid.
    Joerger-Messerli MS; Marx C; Oppliger B; Mueller M; Surbek DV; Schoeberlein A
    Best Pract Res Clin Obstet Gynaecol; 2016 Feb; 31():30-44. PubMed ID: 26482184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemically Defined Conditions Mediate an Efficient Induction of Mesodermal Lineage from Human Umbilical Cord- and Bone Marrow- Mesenchymal Stem Cells and Dental Pulp Pluripotent-Like Stem Cells.
    Al Madhoun A; Alkandari S; Ali H; Carrio N; Atari M; Bitar MS; Al-Mulla F
    Cell Reprogram; 2018 Feb; 20(1):9-16. PubMed ID: 29412734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial transfer from Wharton's jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function.
    Lin HY; Liou CW; Chen SD; Hsu TY; Chuang JH; Wang PW; Huang ST; Tiao MM; Chen JB; Lin TK; Chuang YC
    Mitochondrion; 2015 May; 22():31-44. PubMed ID: 25746175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wharton's jelly mesenchymal stromal/stem cells derived under chemically defined animal product-free low oxygen conditions are rich in MSCA-1(+) subpopulation.
    Devito L; Badraiq H; Galleu A; Taheem DK; Codognotto S; Siow R; Khalaf Y; Briley A; Shennan A; Poston L; McGrath J; Gentleman E; Dazzi F; Ilic D
    Regen Med; 2014; 9(6):723-32. PubMed ID: 25431909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.