BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30409645)

  • 1. Maillard induced aggregation of individual milk proteins and interactions involved.
    Cardoso HB; Wierenga PA; Gruppen H; Schols HA
    Food Chem; 2019 Mar; 276():652-661. PubMed ID: 30409645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maillard induced glycation behaviour of individual milk proteins.
    Cardoso HB; Wierenga PA; Gruppen H; Schols HA
    Food Chem; 2018 Jun; 252():311-317. PubMed ID: 29478547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The aggregation behavior and interactions of yak milk protein under thermal treatment.
    Wang TT; Guo ZW; Liu ZP; Feng QY; Wang XL; Tian Q; Ren FZ; Mao XY
    J Dairy Sci; 2016 Aug; 99(8):6137-6143. PubMed ID: 27209140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal modifications of structure and co-denaturation of alpha-lactalbumin and beta-lactoglobulin induce changes of solubility and susceptibility to proteases.
    Bertrand-Harb C; Baday A; Dalgalarrondo M; Chobert JM; Haertlé T
    Nahrung; 2002 Aug; 46(4):283-9. PubMed ID: 12224426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of α-lactalbumin:β-lactoglobulin ratio on the heat stability of model infant milk formula protein systems.
    Crowley SV; Dowling AP; Caldeo V; Kelly AL; O'Mahony JA
    Food Chem; 2016 Mar; 194():184-90. PubMed ID: 26471542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of heat and high hydrostatic pressure treatments on disulfide bonding interchanges among the proteins in skim milk.
    Patel HA; Singh H; Anema SG; Creamer LK
    J Agric Food Chem; 2006 May; 54(9):3409-20. PubMed ID: 16637702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of heat-induced whey protein denaturation and aggregation in skim milks with adjusted whey protein concentration.
    Oldfield DJ; Singh H; Taylor MW
    J Dairy Res; 2005 Aug; 72(3):369-78. PubMed ID: 16174369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the lactosylation of whey proteins by liquid chromatography-mass spectrometry.
    Czerwenka C; Maier I; Pittner F; Lindner W
    J Agric Food Chem; 2006 Nov; 54(23):8874-82. PubMed ID: 17090137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of soluble and micelle-bound protein aggregates in heated milk.
    Guyomarc'h F; Law AJ; Dalgleish DG
    J Agric Food Chem; 2003 Jul; 51(16):4652-60. PubMed ID: 14705892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic quantification of disulfide-linked polymers in raw and heated bovine milk.
    Chevalier F; Kelly AL
    J Agric Food Chem; 2010 Jun; 58(12):7437-44. PubMed ID: 20504025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The changes of proteins fractions shares in milk and fermented milk drinks.
    Bonczar G; Walczycka M; Duda I
    Acta Sci Pol Technol Aliment; 2016; 15(4):379-389. PubMed ID: 28071015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of different industrial heating processes of milk on site-specific protein modifications and their relationship to in vitro and in vivo digestibility.
    Wada Y; Lönnerdal B
    J Agric Food Chem; 2014 May; 62(18):4175-85. PubMed ID: 24720734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Oxidation and Protein Unfolding on Cross-Linking of β-Lactoglobulin and α-Lactalbumin.
    Krämer AC; Torreggiani A; Davies MJ
    J Agric Food Chem; 2017 Nov; 65(47):10258-10269. PubMed ID: 29096436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization by ionization mass spectrometry of lactosyl beta-lactoglobulin conjugates formed during heat treatment of milk and whey and identification of one lactose-binding site.
    Leonil J; Molle D; Fauquant J; Maubois JL; Pearce RJ; Bouhallab S
    J Dairy Sci; 1997 Oct; 80(10):2270-81. PubMed ID: 9361199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between β-casein and whey proteins as a function of pH and salt concentration.
    Kehoe JJ; Foegeding EA
    J Agric Food Chem; 2011 Jan; 59(1):349-55. PubMed ID: 21133408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of milk serum proteins on aggregation, bacteriostatic activity and digestion of lactoferrin after heat treatment.
    Xiong L; Boeren S; Vervoort J; Hettinga K
    Food Chem; 2021 Feb; 337():127973. PubMed ID: 32927224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of protein aggregates in cream and skimmed human milk after heat and high-pressure pasteurization treatments.
    Gharbi N; Stone D; Fittipaldi N; Unger S; O'Connor DL; Pouliot Y; Doyen A
    Food Chem; 2023 Dec; 429():136749. PubMed ID: 37454618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-linking behavior and foaming properties of bovine α-lactalbumin after glycation with various saccharides.
    Ter Haar R; Westphal Y; Wierenga PA; Schols HA; Gruppen H
    J Agric Food Chem; 2011 Dec; 59(23):12460-6. PubMed ID: 22010962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pH on the association of denatured whey proteins with casein micelles in heated reconstituted skim milk.
    Anema SG; Li Y
    J Agric Food Chem; 2003 Mar; 51(6):1640-6. PubMed ID: 12617598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent labeling study of plasminogen concentration and location in simulated bovine milk systems.
    Wang L; Hayes KD; Mauer LJ
    J Dairy Sci; 2006 Jan; 89(1):58-70. PubMed ID: 16357268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.