These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30409665)

  • 41. HPLC-DAD-MS Profiling of Polyphenols Responsible for the Yellow-Orange Color in Apple Juices of Different French Cider Apple Varieties.
    Le Deun E; Van der Werf R; Le Bail G; Le Quéré JM; Guyot S
    J Agric Food Chem; 2015 Sep; 63(35):7675-84. PubMed ID: 25984746
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oxygen exposure during red wine fermentation modifies tannin reactivity with poly-l-proline.
    Watrelot AA; Day MP; Schulkin A; Falconer RJ; Smith P; Waterhouse AL; Bindon KA
    Food Chem; 2019 Nov; 297():124923. PubMed ID: 31253258
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Compositional and sensory characterization of red wine polymers.
    Wollmann N; Hofmann T
    J Agric Food Chem; 2013 Mar; 61(9):2045-61. PubMed ID: 23387831
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chiral recognition of apple procyanidins by complexation with oxotitanium phthalocyanine.
    Muranaka A; Yoshida K; Shoji T; Moriichi N; Masumoto S; Kanda T; Ohtake Y; Kobayashi N
    Org Lett; 2006 Jun; 8(12):2447-50. PubMed ID: 16737285
    [TBL] [Abstract][Full Text] [Related]  

  • 45. New insight into the unresolved HPLC broad peak of Cabernet Sauvignon grape seed polymeric tannins by combining CPC and Q-ToF approaches.
    Ma W; Waffo-Téguo P; Alessandra Paissoni M; Jourdes M; Teissedre PL
    Food Chem; 2018 May; 249():168-175. PubMed ID: 29407921
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of ionic strength and sulfate upon thermal aggregation of grape chitinases and thaumatin-like proteins in a model system.
    Marangon M; Sauvage FX; Waters EJ; Vernhet A
    J Agric Food Chem; 2011 Mar; 59(6):2652-62. PubMed ID: 21361294
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Off-line comprehensive 2-dimensional hydrophilic interaction x reversed phase liquid chromatography analysis of procyanidins.
    Kalili KM; de Villiers A
    J Chromatogr A; 2009 Aug; 1216(35):6274-84. PubMed ID: 19631941
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of the affinity and selectivity of insoluble fibres and commercial proteins for wine proanthocyanidins.
    Bindon KA; Smith PA
    Food Chem; 2013 Jan; 136(2):917-28. PubMed ID: 23122145
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein/polysaccharide interactions and their impact on haze formation in white wines.
    Dufrechou M; Doco T; Poncet-Legrand C; Sauvage FX; Vernhet A
    J Agric Food Chem; 2015 Nov; 63(45):10042-53. PubMed ID: 26477433
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydrogenolytic depolymerization of procyanidin polymers from hi-tannin sorghum bran.
    Li Z; Zeng J; Tong Z; Qi Y; Gu L
    Food Chem; 2015 Dec; 188():337-42. PubMed ID: 26041201
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NMR, ESI/MS, and MALDI-TOF/MS analysis of pear juice polymeric proanthocyanidins with potent free radical scavenging activity.
    Es-Safi NE; Guyot S; Ducrot PH
    J Agric Food Chem; 2006 Sep; 54(19):6969-77. PubMed ID: 16968050
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impact of processing on the noncovalent interactions between procyanidin and apple cell wall.
    Le Bourvellec C; Watrelot AA; Ginies C; Imberty A; Renard CM
    J Agric Food Chem; 2012 Sep; 60(37):9484-94. PubMed ID: 22861056
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of the oxidative degradation of proanthocyanidins under basic conditions.
    Jorgensen EM; Marin AB; Kennedy JA
    J Agric Food Chem; 2004 Apr; 52(8):2292-6. PubMed ID: 15080635
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Qualitative analysis and HPLC isolation and identification of procyanidins from Vicia faba.
    Merghem R; Jay M; Brun N; Voirin B
    Phytochem Anal; 2004; 15(2):95-9. PubMed ID: 15116939
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phenylpropanoid-substituted procyanidins and tentatively identified procyanidin glycosides from hawthorn (Crataegus spp.).
    Sendker J; Petereit F; Lautenschläger M; Hellenbrand N; Hensel A
    Planta Med; 2013 Jan; 79(1):45-51. PubMed ID: 23154843
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tandem mass spectrometry of the B-type procyanidins in wine and B-type dehydrodicatechins in an autoxidation mixture of (+)-catechin and (-)-epicatechin.
    Sun W; Miller JM
    J Mass Spectrom; 2003 Apr; 38(4):438-46. PubMed ID: 12717756
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of the prefermentative addition of five enological tannins on anthocyanins and color in red wines.
    Liu YX; Liang NN; Wang J; Pan QH; Duan CQ
    J Food Sci; 2013 Jan; 78(1):C25-30. PubMed ID: 23301601
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sulfur dioxide induced aggregation of wine thaumatin-like proteins: Role of disulfide bonds.
    Chagas R; Laia CAT; Ferreira RB; Ferreira LM
    Food Chem; 2018 Sep; 259():166-174. PubMed ID: 29680039
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Non-covalent interaction between procyanidins and apple cell wall material. Part III: Study on model polysaccharides.
    Le Bourvellec C; Bouchet B; Renard CM
    Biochim Biophys Acta; 2005 Aug; 1725(1):10-8. PubMed ID: 16023787
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vine-Shoot Tannins: Effect of Post-pruning Storage and Toasting Treatment.
    Cebrián-Tarancón C; Sánchez-Gómez R; Gómez-Alonso S; Hermosín-Gutierrez I; Mena-Morales A; García-Romero E; Salinas MR; Zalacain A
    J Agric Food Chem; 2018 Jun; 66(22):5556-5562. PubMed ID: 29770693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.