These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30410122)

  • 21. Real-Time Resting-State Functional Magnetic Resonance Imaging Using Averaged Sliding Windows with Partial Correlations and Regression of Confounding Signals.
    Vakamudi K; Trapp C; Talaat K; Gao K; Sa De La Rocque Guimaraes B; Posse S
    Brain Connect; 2020 Oct; 10(8):448-463. PubMed ID: 32892629
    [No Abstract]   [Full Text] [Related]  

  • 22. Thermal Stimulation Alters Cervical Spinal Cord Functional Connectivity in Humans.
    Weber KA; Sentis AI; Bernadel-Huey ON; Chen Y; Wang X; Parrish TB; Mackey S
    Neuroscience; 2018 Jan; 369():40-50. PubMed ID: 29101078
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resting state networks in human cervical spinal cord observed with fMRI.
    Wei P; Li J; Gao F; Ye D; Zhong Q; Liu S
    Eur J Appl Physiol; 2010 Jan; 108(2):265-71. PubMed ID: 19777254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The spinal cord is never at rest.
    Eippert F; Tracey I
    Elife; 2014 Aug; 3():e03811. PubMed ID: 25097250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain.
    van den Heuvel MP; Mandl RC; Kahn RS; Hulshoff Pol HE
    Hum Brain Mapp; 2009 Oct; 30(10):3127-41. PubMed ID: 19235882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Striatal functional connectivity networks are modulated by fMRI resting state conditions.
    Gopinath K; Ringe W; Goyal A; Carter K; Dinse HR; Haley R; Briggs R
    Neuroimage; 2011 Jan; 54(1):380-8. PubMed ID: 20637878
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigating the human spinal sensorimotor pathways through functional magnetic resonance imaging.
    Landelle C; Lungu O; Vahdat S; Kavounoudias A; Marchand-Pauvert V; De Leener B; Doyon J
    Neuroimage; 2021 Dec; 245():118684. PubMed ID: 34732324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development and validation of retrospective spinal cord motion time-course estimates (RESPITE) for spin-echo spinal fMRI: Improved sensitivity and specificity by means of a motion-compensating general linear model analysis.
    Figley CR; Stroman PW
    Neuroimage; 2009 Jan; 44(2):421-7. PubMed ID: 18835581
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alteration of Resting-State Brain Sensorimotor Connectivity following Spinal Cord Injury: A Resting-State Functional Magnetic Resonance Imaging Study.
    Min YS; Park JW; Jin SU; Jang KE; Nam HU; Lee YS; Jung TD; Chang Y
    J Neurotrauma; 2015 Sep; 32(18):1422-7. PubMed ID: 25945389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organization of the intrinsic functional network in the cervical spinal cord: A resting state functional MRI study.
    Liu X; Zhou F; Li X; Qian W; Cui J; Zhou IY; Luk KD; Wu EX; Hu Y
    Neuroscience; 2016 Nov; 336():30-38. PubMed ID: 27590264
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Confirmation of resting-state BOLD fluctuations in the human brainstem and spinal cord after identification and removal of physiological noise.
    Harita S; Stroman PW
    Magn Reson Med; 2017 Dec; 78(6):2149-2156. PubMed ID: 28074492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the detection of high frequency correlations in resting state fMRI.
    Trapp C; Vakamudi K; Posse S
    Neuroimage; 2018 Jan; 164():202-213. PubMed ID: 28163143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A quantitative comparison of BOLD fMRI responses to noxious and innocuous stimuli in the human spinal cord.
    Summers PE; Ferraro D; Duzzi D; Lui F; Iannetti GD; Porro CA
    Neuroimage; 2010 May; 50(4):1408-15. PubMed ID: 20096788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Denoising spinal cord fMRI data: Approaches to acquisition and analysis.
    Eippert F; Kong Y; Jenkinson M; Tracey I; Brooks JCW
    Neuroimage; 2017 Jul; 154():255-266. PubMed ID: 27693613
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.
    Andoh J; Ferreira M; Leppert IR; Matsushita R; Pike B; Zatorre RJ
    Neuroimage; 2017 Feb; 147():726-735. PubMed ID: 27902936
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessing the spatial distribution of cervical spinal cord activity during tactile stimulation of the upper extremity in humans with functional magnetic resonance imaging.
    Weber KA; Chen Y; Paliwal M; Law CS; Hopkins BS; Mackey S; Dhaher Y; Parrish TB; Smith ZA
    Neuroimage; 2020 Aug; 217():116905. PubMed ID: 32387628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tactile sensory and pain networks in the human spinal cord and brain stem mapped by means of functional MR imaging.
    Ghazni NF; Cahill CM; Stroman PW
    AJNR Am J Neuroradiol; 2010 Apr; 31(4):661-7. PubMed ID: 20019102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Altered Cervical Spinal Cord Resting-State Activity in Fibromyalgia.
    Martucci KT; Weber KA; Mackey SC
    Arthritis Rheumatol; 2019 Mar; 71(3):441-450. PubMed ID: 30281205
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurement of T
    Barry RL; Smith SA
    Magn Reson Med; 2019 Aug; 82(2):743-748. PubMed ID: 30924198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.