These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 30410430)

  • 1. Self‑propelled droplets on heated surfaces with angled self‑assembled micro/nanostructures.
    Kruse C; Somanas I; Anderson T; Wilson C; Zuhlke C; Alexander D; Gogos G; Ndao S
    Microfluid Nanofluidics; 2015; 18(5-6):1417-1424. PubMed ID: 30410430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces.
    Li Q; Kang QJ; Francois MM; Hu AJ
    Soft Matter; 2016 Jan; 12(1):302-12. PubMed ID: 26467921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-step process for dual-scale ratchets with enhanced mobility of Leidenfrost droplets.
    Liu C; Sun K; Lu C; Su J; Han L; Wang Z; Liu Y
    J Colloid Interface Sci; 2020 Jun; 569():229-234. PubMed ID: 32113020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric wettability of nanostructures directs leidenfrost droplets.
    Agapov RL; Boreyko JB; Briggs DP; Srijanto BR; Retterer ST; Collier CP; Lavrik NV
    ACS Nano; 2014 Jan; 8(1):860-7. PubMed ID: 24298880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Different Fluids on Rectified Motion of Leidenfrost Droplets on Micro/Sub-Micron Ratchets.
    Ok JT; Choi J; Brown E; Park S
    Microelectron Eng; 2016 Jun; 158():130-134. PubMed ID: 27721527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces.
    Kruse C; Anderson T; Wilson C; Zuhlke C; Alexander D; Gogos G; Ndao S
    Langmuir; 2013 Aug; 29(31):9798-806. PubMed ID: 23799305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ratchet composite thin film for low-temperature self-propelled Leidenfrost droplet.
    Feng R; Zhao W; Wu X; Xue Q
    J Colloid Interface Sci; 2012 Feb; 367(1):450-4. PubMed ID: 22137167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced pool-boiling heat transfer and critical heat flux on femtosecond laser processed stainless steel surfaces.
    Kruse CM; Anderson T; Wilson C; Zuhlke C; Alexander D; Gogos G; Ndao S
    Int J Heat Mass Transf; 2015 Mar; 82():109-116. PubMed ID: 30449897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial Leidenfrost Evaporation-Assisted Ultrasensitive Surface-Enhanced Raman Spectroscopy in a Janus Water Droplet on Hierarchical Plasmonic Micro-/Nanostructures.
    Song J; Cheng W; Nie M; He X; Nam W; Cheng J; Zhou W
    ACS Nano; 2020 Aug; 14(8):9521-9531. PubMed ID: 32589403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How droplets move on laser-structured surfaces: Determination of droplet adhesion forces on nano- and microstructured surfaces.
    Schnell G; Polley C; Thomas R; Bartling S; Wagner J; Springer A; Seitz H
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):951-964. PubMed ID: 36327711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterned Ultraslippery Surfaces of Stainless Steel Prepared by Femtosecond Laser Ablation for Directional Manipulation of Liquid Droplets.
    Liu S; Huang Q; Gao R; Yuan G; Li N; Liu Y; Zhang X; Chen Y; Wang M
    Langmuir; 2024 Oct; 40(39):20763-20772. PubMed ID: 39287408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Length scale of Leidenfrost ratchet switches droplet directionality.
    Agapov RL; Boreyko JB; Briggs DP; Srijanto BR; Retterer ST; Collier CP; Lavrik NV
    Nanoscale; 2014 Aug; 6(15):9293-9. PubMed ID: 24986190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaporation-triggered directional transport of asymmetrically confined droplets.
    He X; Cheng J
    J Colloid Interface Sci; 2021 Dec; 604():550-561. PubMed ID: 34274716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-propelled Leidenfrost droplets on a heated glycerol pool.
    Matsumoto R; Hasegawa K
    Sci Rep; 2021 Feb; 11(1):3954. PubMed ID: 33597605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Maskless Fabrication of Bionic Unidirectional Liquid Spreading Surfaces Using a Phase Spatially Shaped Femtosecond Laser.
    Chen X; Li X; Zuo P; Liang M; Li X; Xu C; Yuan Y; Wang S
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13781-13791. PubMed ID: 33703880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced droplet control by transition boiling.
    Grounds A; Still R; Takashina K
    Sci Rep; 2012; 2():720. PubMed ID: 23056912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional Electrostatic Droplet Manipulation on the Femtosecond Laser-Prepared Slippery Surfaces.
    Li X; Wang C; Hu Y; Cheng Z; Xu T; Chen Z; Yong J; Wu D
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):18154-18163. PubMed ID: 38547460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-propelled Leidenfrost droplets.
    Linke H; Alemán BJ; Melling LD; Taormina MJ; Francis MJ; Dow-Hygelund CC; Narayanan V; Taylor RP; Stout A
    Phys Rev Lett; 2006 Apr; 96(15):154502. PubMed ID: 16712160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed directional transport of condensate droplets on superhydrophobic saw-tooth surfaces.
    Hou H; Wu X; Hu Z; Gao S; Wu Y; Lin Y; Dai L; Zou G; Liu L; Yuan Z
    J Colloid Interface Sci; 2023 Nov; 649():290-301. PubMed ID: 37352560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures.
    Zhang P; Maeda Y; Lv F; Takata Y; Orejon D
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35391-35403. PubMed ID: 28925681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.