BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30410484)

  • 21. Experimental autoimmune myasthenia gravis induction in B cell-deficient mice.
    Li H; Shi FD; He B; Bakheit M; Wahren B; Berglöf A; Sandstedt K; Link H
    Int Immunol; 1998 Sep; 10(9):1359-65. PubMed ID: 9786435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. B7-1 costimulatory molecule is critical for the development of experimental autoimmune myasthenia gravis.
    Poussin MA; Tüzün E; Goluszko E; Scott BG; Yang H; Franco JU; Christadoss P
    J Immunol; 2003 Apr; 170(8):4389-96. PubMed ID: 12682276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cathepsin S is required for murine autoimmune myasthenia gravis pathogenesis.
    Yang H; Kala M; Scott BG; Goluszko E; Chapman HA; Christadoss P
    J Immunol; 2005 Feb; 174(3):1729-37. PubMed ID: 15661938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Factors that determine the severity of experimental myasthenia gravis.
    Drachman DB; McIntosh KR; Yang B
    Ann N Y Acad Sci; 1998 May; 841():262-82. PubMed ID: 9668247
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel animal models of acetylcholine receptor antibody-related myasthenia gravis.
    Tüzün E; Allman W; Ulusoy C; Yang H; Christadoss P
    Ann N Y Acad Sci; 2012 Dec; 1274():133-9. PubMed ID: 23252908
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism and function of Vav1 localisation in TCR signalling.
    Ksionda O; Saveliev A; Köchl R; Rapley J; Faroudi M; Smith-Garvin JE; Wülfing C; Rittinger K; Carter T; Tybulewicz VL
    J Cell Sci; 2012 Nov; 125(Pt 22):5302-14. PubMed ID: 22956543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transgenic expression of IL-10 in T cells facilitates development of experimental myasthenia gravis.
    Ostlie NS; Karachunski PI; Wang W; Monfardini C; Kronenberg M; Conti-Fine BM
    J Immunol; 2001 Apr; 166(8):4853-62. PubMed ID: 11290761
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Suppression of experimental myasthenia gravis, a B cell-mediated autoimmune disease, by blockade of IL-18.
    Im SH; Barchan D; Maiti PK; Raveh L; Souroujon MC; Fuchs S
    FASEB J; 2001 Oct; 15(12):2140-8. PubMed ID: 11641240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms by which the I-ABM12 mutation influences susceptibility to experimental myasthenia gravis: a study in homozygous and heterozygous mice.
    Karachunski PI; Ostlie N; Bellone M; Infante AJ; Conti-Fine BM
    Scand J Immunol; 1995 Aug; 42(2):215-25. PubMed ID: 7631155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CD4+ T and B cells cooperate in the immunoregulation of Experimental Autoimmune Myasthenia Gravis.
    Milani M; Ostlie N; Wu H; Wang W; Conti-Fine BM
    J Neuroimmunol; 2006 Oct; 179(1-2):152-62. PubMed ID: 16945426
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decreased expression of Src homology 2 domain-containing protein tyrosine phosphatase 1 reduces T cell activation threshold but not the severity of experimental autoimmune myasthenia gravis.
    Deng C; Wu B; Yang H; Hussain RZ; Lovett-Racke AE; Christadoss P; Racke MK
    J Neuroimmunol; 2003 May; 138(1-2):76-82. PubMed ID: 12742656
    [TBL] [Abstract][Full Text] [Related]  

  • 32. T-cell receptor- and CD28-induced Vav1 activity is required for the accumulation of primed T cells into antigenic tissue.
    David R; Ma L; Ivetic A; Takesono A; Ridley AJ; Chai JG; Tybulewicz VL; Marelli-Berg FM
    Blood; 2009 Apr; 113(16):3696-705. PubMed ID: 19060239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. T cell receptor transgenic mice recognizing the immunodominant epitope of the Torpedo californica acetylcholine receptor.
    Lobito AA; Yang B; Lopes MF; Miagkov A; Adams RN; Palardy GR; Johnson MM; McFarland HI; Recher M; Drachman DB; Lenardo MJ
    Eur J Immunol; 2002 Jul; 32(7):2055-67. PubMed ID: 12115627
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The limitation of IL-10-exposed dendritic cells in the treatment of experimental autoimmune myasthenia gravis and myasthenia gravis.
    Xiao BG; Duan RS; Zhu WH; Lu CZ
    Cell Immunol; 2006 Jun; 241(2):95-101. PubMed ID: 17005165
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studying the dynamics of SLP-76, Nck, and Vav1 multimolecular complex formation in live human cells with triple-color FRET.
    Pauker MH; Hassan N; Noy E; Reicher B; Barda-Saad M
    Sci Signal; 2012 Apr; 5(221):rs3. PubMed ID: 22534133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complement regulator CD59 deficiency fails to augment susceptibility to actively induced experimental autoimmune myasthenia gravis.
    Tüzün E; Saini SS; Morgan BP; Christadoss P
    J Neuroimmunol; 2006 Dec; 181(1-2):29-33. PubMed ID: 17056125
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Suppression of experimental autoimmune myasthenia gravis by autologous T regulatory cells.
    Aricha R; Reuveni D; Fuchs S; Souroujon MC
    J Autoimmun; 2016 Feb; 67():57-64. PubMed ID: 26489998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Absence of IL-4 facilitates the development of chronic autoimmune myasthenia gravis in C57BL/6 mice.
    Ostlie N; Milani M; Wang W; Okita D; Conti-Fine BM
    J Immunol; 2003 Jan; 170(1):604-12. PubMed ID: 12496449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oral administration of an immunodominant T-cell epitope downregulates Th1/Th2 cytokines and prevents experimental myasthenia gravis.
    Baggi F; Andreetta F; Caspani E; Milani M; Longhi R; Mantegazza R; Cornelio F; Antozzi C
    J Clin Invest; 1999 Nov; 104(9):1287-95. PubMed ID: 10545527
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TCR gene usage in experimental autoimmune myasthenia gravis pathogenesis. Usage of multiple TCRBV genes in the H-2b strains.
    Wu B; Shenoy M; Goluszko E; Kaul R; Christadoss P
    J Immunol; 1995 Apr; 154(7):3603-10. PubMed ID: 7897239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.