These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30410484)

  • 41. Experimental autoimmune myasthenia gravis in B10.BV8S2 transgenic mice: preferential usage of TCRAV1 gene by lymphocytes responding to acetylcholine receptor.
    Kaul R; Wu B; Goluszko E; Deng C; Dedhia V; Nabozny GH; David CS; Rimm IJ; Shenoy M; Haqqi TM; Christadoss P
    J Immunol; 1997 Jun; 158(12):6006-12. PubMed ID: 9190955
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lineage-specific requirement for the PH domain of Vav1 in the activation of CD4+ but not CD8+ T cells.
    Prisco A; Vanes L; Ruf S; Trigueros C; Tybulewicz VL
    Immunity; 2005 Sep; 23(3):263-74. PubMed ID: 16169499
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anti-CTLA-4 antibody treatment triggers determinant spreading and enhances murine myasthenia gravis.
    Wang HB; Shi FD; Li H; Chambers BJ; Link H; Ljunggren HG
    J Immunol; 2001 May; 166(10):6430-6. PubMed ID: 11342669
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Absence of IFN-gamma or IL-12 has different effects on experimental myasthenia gravis in C57BL/6 mice.
    Karachunski PI; Ostlie NS; Monfardini C; Conti-Fine BM
    J Immunol; 2000 May; 164(10):5236-44. PubMed ID: 10799884
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genetic deficiency of estrogen receptor alpha fails to influence experimental autoimmune myasthenia gravis pathogenesis.
    Qi H; Li J; Allman W; Saini SS; Tüzün E; Wu X; Estes DM; Christadoss P
    J Neuroimmunol; 2011 May; 234(1-2):165-7. PubMed ID: 21481948
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Function of the nucleotide exchange activity of vav1 in T cell development and activation.
    Saveliev A; Vanes L; Ksionda O; Rapley J; Smerdon SJ; Rittinger K; Tybulewicz VL
    Sci Signal; 2009 Dec; 2(101):ra83. PubMed ID: 20009105
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prevention of experimental myasthenia gravis by nasal administration of synthetic acetylcholine receptor T epitope sequences.
    Karachunski PI; Ostlie NS; Okita DK; Conti-Fine BM
    J Clin Invest; 1997 Dec; 100(12):3027-35. PubMed ID: 9399949
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Protective potential of experimental autoimmune myasthenia gravis in Lewis rats by IL-10-modified dendritic cells.
    Duan RS; Adikari SB; Huang YM; Link H; Xiao BG
    Neurobiol Dis; 2004 Jul; 16(2):461-7. PubMed ID: 15193302
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Clustering of B and T epitopes within short sequence regions of the nicotinic acetylcholine receptor.
    Bellone M; Karachunski PI; Ostlie N; Lei S; Conti-Fine BM
    Scand J Immunol; 1995 Feb; 41(2):135-40. PubMed ID: 7532317
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Breakdown of tolerance to a self-peptide of acetylcholine receptor alpha-subunit induces experimental myasthenia gravis in rats.
    Baggi F; Annoni A; Ubiali F; Milani M; Longhi R; Scaioli W; Cornelio F; Mantegazza R; Antozzi C
    J Immunol; 2004 Feb; 172(4):2697-703. PubMed ID: 14764745
    [TBL] [Abstract][Full Text] [Related]  

  • 51. T-bet deficiency decreases susceptibility to experimental myasthenia gravis.
    Liu R; Hao J; Dayao CS; Shi FD; Campagnolo DI
    Exp Neurol; 2009 Dec; 220(2):366-73. PubMed ID: 19818352
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fas/Fas ligand pathway, apoptosis, and clonal anergy involved in systemic acetylcholine receptor T cell epitope tolerance.
    Deng C; Goluszko E; Christadoss P
    J Immunol; 2001 Mar; 166(5):3458-67. PubMed ID: 11207304
    [TBL] [Abstract][Full Text] [Related]  

  • 53. RNA interference targeting Bcl-6 ameliorates experimental autoimmune myasthenia gravis in mice.
    Xin N; Fu L; Shao Z; Guo M; Zhang X; Zhang Y; Dou C; Zheng S; Shen X; Yao Y; Wang J; Wang J; Cui G; Liu Y; Geng D; Xiao C; Zhang Z; Dong R
    Mol Cell Neurosci; 2014 Jan; 58():85-94. PubMed ID: 24361642
    [TBL] [Abstract][Full Text] [Related]  

  • 54. T-cell immunity to acetylcholine receptor and its subunits in Lewis rats over the course of experimental autoimmune myasthenia gravis.
    Wang ZY; Link H; Huang WX
    Scand J Immunol; 1993 May; 37(5):615-22. PubMed ID: 7683442
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of B cell deficiency on the immune response to acetylcholine receptor and the development of experimental autoimmune myasthenia gravis.
    Dedhia V; Goluszko E; Wu B; Deng C; Christadoss P
    Clin Immunol Immunopathol; 1998 Jun; 87(3):266-75. PubMed ID: 9646836
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On the initial trigger of myasthenia gravis and suppression of the disease by antibodies against the MHC peptide region involved in the presentation of a pathogenic T-cell epitope.
    Atassi MZ; Oshima M; Deitiker P
    Crit Rev Immunol; 2001; 21(1-3):1-27. PubMed ID: 11642597
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Suppression of experimental autoimmune myasthenia gravis by epitope-specific neonatal tolerance to synthetic region alpha 146-162 of acetylcholine receptor.
    Shenoy M; Oshima M; Atassi MZ; Christadoss P
    Clin Immunol Immunopathol; 1993 Mar; 66(3):230-8. PubMed ID: 7679342
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Experimental autoimmune myasthenia gravis in mice expressing human immunoglobulin loci.
    Stassen MH; Meng F; Melgert E; Machiels BM; Im SH; Fuchs S; Gerritsen AF; van Dijk MA; van de Winkel JG; De Baets MH
    J Neuroimmunol; 2003 Feb; 135(1-2):56-61. PubMed ID: 12576224
    [TBL] [Abstract][Full Text] [Related]  

  • 59. VAV1 as a putative therapeutic target in autoimmune and chronic inflammatory diseases.
    Neurath MF; Berg LJ
    Trends Immunol; 2024 Aug; 45(8):580-596. PubMed ID: 39060140
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Oral administration of a dual analog of two myasthenogenic T cell epitopes down-regulates experimental autoimmune myasthenia gravis in mice.
    Paas-Rozner M; Dayan M; Paas Y; Changeux JP; Wirguin I; Sela M; Mozes E
    Proc Natl Acad Sci U S A; 2000 Feb; 97(5):2168-73. PubMed ID: 10681457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.