These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 30410869)
1. Insect and insect-inspired aerodynamics: unsteadiness, structural mechanics and flight control. Bomphrey RJ; Godoy-Diana R Curr Opin Insect Sci; 2018 Dec; 30():26-32. PubMed ID: 30410869 [TBL] [Abstract][Full Text] [Related]
2. On flapping flight mechanisms and their applications to wind and marine energy harvesting. Thiria B Curr Opin Insect Sci; 2018 Dec; 30():39-45. PubMed ID: 30553483 [TBL] [Abstract][Full Text] [Related]
4. Aerodynamic effects of flexibility in flapping wings. Zhao L; Huang Q; Deng X; Sane SP J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394 [TBL] [Abstract][Full Text] [Related]
5. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight. Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D Elife; 2021 Mar; 10():. PubMed ID: 33724182 [TBL] [Abstract][Full Text] [Related]
6. Biomechanics and biomimetics in insect-inspired flight systems. Liu H; Ravi S; Kolomenskiy D; Tanaka H Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528780 [TBL] [Abstract][Full Text] [Related]
7. Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover. Kang CK; Shyy W J R Soc Interface; 2014 Dec; 11(101):20140933. PubMed ID: 25297319 [TBL] [Abstract][Full Text] [Related]
8. Flow development and leading edge vorticity in bristled insect wings. O'Callaghan F; Lehmann FO J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Mar; 209(2):219-229. PubMed ID: 36810678 [TBL] [Abstract][Full Text] [Related]
10. The mechanisms of lift enhancement in insect flight. Lehmann FO Naturwissenschaften; 2004 Mar; 91(3):101-22. PubMed ID: 15034660 [TBL] [Abstract][Full Text] [Related]
11. Wings and powered flight: Core novelties in insect evolution. Dudley R; Pass G Arthropod Struct Dev; 2018 Jul; 47(4):319-321. PubMed ID: 29936299 [No Abstract] [Full Text] [Related]
12. Fully-printed metamaterial-type flexible wings with controllable flight characteristics. Zhilyaev I; Anerao N; Kottapalli AGP; Yilmaz MC; Murat M; Ranjbar M; Krushynska A Bioinspir Biomim; 2022 Jan; 17(2):. PubMed ID: 34905740 [TBL] [Abstract][Full Text] [Related]
13. Biomechanics of Insect Flight Stability and Perturbation Response. Hedrick TL; Blandford E; Taha HE Integr Comp Biol; 2024 Sep; 64(2):611-618. PubMed ID: 38897796 [TBL] [Abstract][Full Text] [Related]
14. A chordwise offset of the wing-pitch axis enhances rotational aerodynamic forces on insect wings: a numerical study. van Veen WG; van Leeuwen JL; Muijres FT J R Soc Interface; 2019 Jun; 16(155):20190118. PubMed ID: 31213176 [TBL] [Abstract][Full Text] [Related]
15. Flapping wing aerodynamics: from insects to vertebrates. Chin DD; Lentink D J Exp Biol; 2016 Apr; 219(Pt 7):920-32. PubMed ID: 27030773 [TBL] [Abstract][Full Text] [Related]
17. The added mass forces in insect flapping wings. Liu L; Sun M J Theor Biol; 2018 Jan; 437():45-50. PubMed ID: 29037847 [TBL] [Abstract][Full Text] [Related]
18. Mechanics and aerodynamics of insect flight control. Taylor GK Biol Rev Camb Philos Soc; 2001 Nov; 76(4):449-71. PubMed ID: 11762490 [TBL] [Abstract][Full Text] [Related]
19. Elastic storage enables robustness of flapping wing dynamics. Cai X; Xue Y; Kolomenskiy D; Xu R; Liu H Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35504276 [TBL] [Abstract][Full Text] [Related]
20. The novel aerodynamics of insect flight: applications to micro-air vehicles. Ellington CP J Exp Biol; 1999 Dec; 202(Pt 23):3439-48. PubMed ID: 10562527 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]