These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 30411065)
21. Nile red: a selective fluorescent stain for intracellular lipid droplets. Greenspan P; Mayer EP; Fowler SD J Cell Biol; 1985 Mar; 100(3):965-73. PubMed ID: 3972906 [TBL] [Abstract][Full Text] [Related]
22. Choosing the right fluorophore for single-molecule fluorescence studies in a lipid environment. Zhang Z; Yomo D; Gradinaru C Biochim Biophys Acta Biomembr; 2017 Jul; 1859(7):1242-1253. PubMed ID: 28392350 [TBL] [Abstract][Full Text] [Related]
23. Mega-stokes pyrene ceramide conjugates for STED imaging of lipid droplets in live cells. O Connor D; Byrne A; Berselli GB; Long C; Keyes TE Analyst; 2019 Feb; 144(5):1608-1621. PubMed ID: 30631867 [TBL] [Abstract][Full Text] [Related]
24. On the intracellular release mechanism of hydrophobic cargo and its relation to the biodegradation behavior of mesoporous silica nanocarriers. von Haartman E; Lindberg D; Prabhakar N; Rosenholm JM Eur J Pharm Sci; 2016 Dec; 95():17-27. PubMed ID: 27267567 [TBL] [Abstract][Full Text] [Related]
25. Analyzing Förster resonance energy transfer with fluctuation algorithms. Felekyan S; Sanabria H; Kalinin S; Kühnemuth R; Seidel CA Methods Enzymol; 2013; 519():39-85. PubMed ID: 23280107 [TBL] [Abstract][Full Text] [Related]
26. Nile-Red-nanoclay hybrids: red emissive optical probes for use in aqueous dispersion. Felbeck T; Behnke T; Hoffmann K; Grabolle M; Lezhnina MM; Kynast UH; Resch-Genger U Langmuir; 2013 Sep; 29(36):11489-97. PubMed ID: 23941582 [TBL] [Abstract][Full Text] [Related]
28. A new method for encapsulating hydrophobic compounds within cationic polymeric nanoparticles. Ben Yehuda Greenwald M; Ben Sasson S; Bianco-Peled H J Microencapsul; 2013; 30(6):580-8. PubMed ID: 23489012 [TBL] [Abstract][Full Text] [Related]
29. Novel 1:1 labeling and purification process for C-terminal thioester and single cysteine recombinant proteins using generic peptidic toolbox reagents. Portal CF; Seifert JM; Buehler C; Meisner-Kober NC; Auer M Bioconjug Chem; 2014 Jul; 25(7):1213-22. PubMed ID: 24866260 [TBL] [Abstract][Full Text] [Related]
30. Simultaneous diffusion and brightness measurements and brightness profile visualization from single fluorescence fluctuation traces of GFP in living cells. Skakun VV; Engel R; Borst JW; Apanasovich VV; Visser AJ Eur Biophys J; 2012 Dec; 41(12):1055-64. PubMed ID: 23064964 [TBL] [Abstract][Full Text] [Related]
31. The effect of anionic dicephalic surfactants on fabrication of varied-core nanocarriers for sustained release of porphyrin photosensitizers. Bazylińska U; Frąckowiak R; Brzózka Z; Wilk KA J Photochem Photobiol B; 2017 Jan; 166():169-179. PubMed ID: 27915030 [TBL] [Abstract][Full Text] [Related]
32. Redox-Responsive Nanocarrier for Controlled Release of Drugs in Inflammatory Skin Diseases. Rajes K; Walker KA; Hadam S; Zabihi F; Rancan F; Vogt A; Haag R Pharmaceutics; 2020 Dec; 13(1):. PubMed ID: 33383706 [TBL] [Abstract][Full Text] [Related]
33. Antibacterial activity of antipsychotic agents, their association with lipid nanocapsules and its impact on the properties of the nanocarriers and on antibacterial activity. Nehme H; Saulnier P; Ramadan AA; Cassisa V; Guillet C; Eveillard M; Umerska A PLoS One; 2018; 13(1):e0189950. PubMed ID: 29298353 [TBL] [Abstract][Full Text] [Related]
34. Energy-Transfer Schemes To Probe Fluorescent Nanocarriers and Their Emissive Cargo. Thapaliya ER; Fowley C; Callan B; Tang S; Zhang Y; Callan JF; Raymo FM Langmuir; 2015 Sep; 31(35):9557-65. PubMed ID: 26275045 [TBL] [Abstract][Full Text] [Related]
35. Impact of covalently Nile Red and covalently Rhodamine labeled fluorescent polymer micelles for the improved imaging of the respective drug delivery system. Trubitsyn G; Nguyen VN; Di Tommaso C; Borchard G; Gurny R; Möller M Eur J Pharm Biopharm; 2019 Sep; 142():480-487. PubMed ID: 31336183 [TBL] [Abstract][Full Text] [Related]
36. Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis. Roger E; Lagarce F; Garcion E; Benoit JP J Control Release; 2009 Dec; 140(2):174-81. PubMed ID: 19699246 [TBL] [Abstract][Full Text] [Related]
37. The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Genicot G; Leroy JL; Soom AV; Donnay I Theriogenology; 2005 Mar; 63(4):1181-94. PubMed ID: 15710202 [TBL] [Abstract][Full Text] [Related]
38. Release of Nile red from thermoresponsive gold nanocomposites by heating a solution and the addition of glutathione. Uehara N; Yoshida O Anal Sci; 2012; 28(12):1125-32. PubMed ID: 23232230 [TBL] [Abstract][Full Text] [Related]
39. Monitoring of release of cargo from nanocarriers by MRI/MR spectroscopy (MRS): significance of T2/T2* effect of iron particles. Kato Y; Artemov D Magn Reson Med; 2009 May; 61(5):1059-65. PubMed ID: 19253373 [TBL] [Abstract][Full Text] [Related]
40. Resveratrol-Loaded Lipid Nanocarriers Are Internalized By Endocytosis in Yeast. Barbosa C; Santos-Pereira C; Soares I; Martins V; Terra-Matos J; Côrte-Real M; Lúcio M; Oliveira MECDR; Gerós H J Nat Prod; 2019 May; 82(5):1240-1249. PubMed ID: 30964667 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]