These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 30411103)
41. The irreversible formation of palladium carbide during hydrogenation of 1-pentyne over silica-supported palladium nanoparticles: in situ Pd K and L3 edge XAS. Tew MW; Nachtegaal M; Janousch M; Huthwelker T; van Bokhoven JA Phys Chem Chem Phys; 2012 Apr; 14(16):5761-8. PubMed ID: 22422024 [TBL] [Abstract][Full Text] [Related]
42. In situ synthesis of Ru/RGO nanocomposites as a highly efficient catalyst for selective hydrogenation of halonitroaromatics. Fan G; Huang W; Wang C Nanoscale; 2013 Aug; 5(15):6819-25. PubMed ID: 23771438 [TBL] [Abstract][Full Text] [Related]
43. Selective Semihydrogenation of Alkynes Catalyzed by Pd Nanoparticles Immobilized on Heteroatom-Doped Hierarchical Porous Carbon Derived from Bamboo Shoots. Ji G; Duan Y; Zhang S; Fei B; Chen X; Yang Y ChemSusChem; 2017 Sep; 10(17):3427-3434. PubMed ID: 28762664 [TBL] [Abstract][Full Text] [Related]
44. The polymer incarcerated method for the preparation of highly active heterogeneous palladium catalysts. Akiyama R; Kobayashi S J Am Chem Soc; 2003 Mar; 125(12):3412-3. PubMed ID: 12643686 [TBL] [Abstract][Full Text] [Related]
45. In situ formed "weakly ligated/labile ligand" iridium(0) nanoparticles and aggregates as catalysts for the complete hydrogenation of neat benzene at room temperature and mild pressures. Bayram E; Zahmakiran M; Ozkar S; Finke RG Langmuir; 2010 Jul; 26(14):12455-64. PubMed ID: 20536218 [TBL] [Abstract][Full Text] [Related]
46. Selective hydrogenation of nitroarenes to aminoarenes using a MoO Tamura M; Yuasa N; Nakagawa Y; Tomishige K Chem Commun (Camb); 2017 Mar; 53(23):3377-3380. PubMed ID: 28265610 [TBL] [Abstract][Full Text] [Related]
47. Single-Atom Pd₁/Graphene Catalyst Achieved by Atomic Layer Deposition: Remarkable Performance in Selective Hydrogenation of 1,3-Butadiene. Yan H; Cheng H; Yi H; Lin Y; Yao T; Wang C; Li J; Wei S; Lu J J Am Chem Soc; 2015 Aug; 137(33):10484-7. PubMed ID: 26268551 [TBL] [Abstract][Full Text] [Related]
48. High-performance palladium catalysts for the hydrogenation toward dibenzylbiotinmethylester: Effect of carbon support functionalization. An N; Zhang M; Zhang Z; Dai Y; Shen Y; Tang C; Yuan X; Zhou W J Colloid Interface Sci; 2018 Jan; 510():181-189. PubMed ID: 28942168 [TBL] [Abstract][Full Text] [Related]
49. H2 dissociation over NbO: the first step toward hydrogenation of Mg. Takahashi K; Isobe S; Ohnuki S Langmuir; 2013 Sep; 29(38):12059-65. PubMed ID: 23980657 [TBL] [Abstract][Full Text] [Related]
50. Highly selective hydrogenation of carbon-carbon multiple bonds catalyzed by the cation [(C(6)Me(6))(2)Ru(2)(PPh(2))H(2)](+): molecular structure of [(C(6)Me(6))(2)Ru(2)(PPh(2))(CHCHPh)H](+), a possible intermediate in the case of phenylacetylene hydrogenation. Tschan MJ; Süss-Fink G; Chérioux F; Therrien B Chemistry; 2007; 13(1):292-9. PubMed ID: 16969773 [TBL] [Abstract][Full Text] [Related]
51. Selective Hydrogenation of Acrolein Over Pd Model Catalysts: Temperature and Particle-Size Effects. O'Brien CP; Dostert KH; Schauermann S; Freund HJ Chemistry; 2016 Oct; 22(44):15856-15863. PubMed ID: 27621113 [TBL] [Abstract][Full Text] [Related]
52. Hydrogenation of nitrotoluene using palladium supported on chitosan hollow fiber: catalyst characterization and influence of operative parameters studied by experimental design methodology. Blondet FP; Vincent T; Guibal E Int J Biol Macromol; 2008 Jul; 43(1):69-78. PubMed ID: 18249056 [TBL] [Abstract][Full Text] [Related]
53. Industrial Ziegler-type hydrogenation catalysts made from Co(neodecanoate)2 or Ni(2-ethylhexanoate)2 and AlEt3: evidence for nanoclusters and sub-nanocluster or larger Ziegler-nanocluster based catalysis. Alley WM; Hamdemir IK; Wang Q; Frenkel AI; Li L; Yang JC; Menard LD; Nuzzo RG; Özkar S; Yih KH; Johnson KA; Finke RG Langmuir; 2011 May; 27(10):6279-94. PubMed ID: 21480617 [TBL] [Abstract][Full Text] [Related]
54. Hybrid Catalyst of a Metal-Organic Framework, Metal Nanoparticles, and Oxide That Enables Strong Steric Constraint and Metal-Support Interaction for the Highly Effective and Selective Hydrogenation of Cinnamaldehyde. Yang LX; Wu HQ; Gao HY; Li JQ; Tao Y; Yin WH; Luo F Inorg Chem; 2018 Oct; 57(20):12461-12465. PubMed ID: 30251837 [TBL] [Abstract][Full Text] [Related]
55. Metal dependent catalytic hydrogenation of nitroarenes over water-soluble glutathione capped metal nanoparticles. Sharma S J Colloid Interface Sci; 2015 Mar; 441():25-9. PubMed ID: 25485808 [TBL] [Abstract][Full Text] [Related]
56. Pd@Zn-MOF-74: Restricting a Guest Molecule by the Open-Metal Site in a Metal-Organic Framework for Selective Semihydrogenation. Wu HQ; Huang L; Li JQ; Zheng AM; Tao Y; Yang LX; Yin WH; Luo F Inorg Chem; 2018 Oct; 57(20):12444-12447. PubMed ID: 30272455 [TBL] [Abstract][Full Text] [Related]
57. Water-dispersible Hollow Microporous Organic Network Spheres as Substrate for Electroless Deposition of Ultrafine Pd Nanoparticles with High Catalytic Activity and Recyclability. Wang Z; Chang J; Hu Y; Yu Y; Guo Y; Zhang B Chem Asian J; 2016 Nov; 11(22):3178-3182. PubMed ID: 27685831 [TBL] [Abstract][Full Text] [Related]
58. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction. Hong JW; Kang SW; Choi BS; Kim D; Lee SB; Han SW ACS Nano; 2012 Mar; 6(3):2410-9. PubMed ID: 22360814 [TBL] [Abstract][Full Text] [Related]
59. Selective semihydrogenation of alkynes on shape-controlled palladium nanocrystals. Chung J; Kim C; Jeong H; Yu T; Binh DH; Jang J; Lee J; Kim BM; Lim B Chem Asian J; 2013 May; 8(5):919-25. PubMed ID: 23468235 [TBL] [Abstract][Full Text] [Related]
60. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Zhao M; Yuan K; Wang Y; Li G; Guo J; Gu L; Hu W; Zhao H; Tang Z Nature; 2016 Nov; 539(7627):76-80. PubMed ID: 27706142 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]