These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30411163)

  • 1. Facile Solution Synthesis of Red Phosphorus Nanoparticles for Lithium Ion Battery Anodes.
    Wang F; Zi W; Zhao BX; Du HB
    Nanoscale Res Lett; 2018 Nov; 13(1):356. PubMed ID: 30411163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Room-Temperature Solution Synthesis of Mesoporous Silicon for Lithium Ion Battery Anodes.
    Sun L; Wang F; Su T; Du H
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40386-40393. PubMed ID: 29083851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution Synthesis of Iodine-Doped Red Phosphorus Nanoparticles for Lithium-Ion Battery Anodes.
    Chang WC; Tseng KW; Tuan HY
    Nano Lett; 2017 Feb; 17(2):1240-1247. PubMed ID: 28080070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Vapor Transport Synthesis of Fibrous Red Phosphorus Crystal as Anodes for Lithium-Ion Batteries.
    Liu L; Gao X; Cui X; Wang B; Hu F; Yuan T; Li J; Zu L; Lian H; Cui X
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Application of Phosphorus/Co
    Zamani N; Modarresi-Alam AR; Noroozifar M
    ACS Omega; 2018 Apr; 3(4):4620-4630. PubMed ID: 31458683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mild-Temperature Solution-Assisted Encapsulation of Phosphorus into ZIF-8 Derived Porous Carbon as Lithium-Ion Battery Anode.
    Yan C; Zhao H; Li J; Jin H; Liu L; Wu W; Wang J; Lei Y; Wang S
    Small; 2020 Mar; 16(11):e1907141. PubMed ID: 32083792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Red Phosphorus-Embedded Cross-Link-Structural Carbon Films as Flexible Anodes for Highly Reversible Li-Ion Storage.
    Ruan J; Yuan T; Pang Y; Xu X; Yang J; Hu W; Zhong C; Ma ZF; Bi X; Zheng S
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36261-36268. PubMed ID: 28960055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Te-rP-C Anodes Prepared Using a Scalable Milling Process for High-Performance Lithium-Ion Batteries.
    Choi WS; Kim M; Kim IT
    Micromachines (Basel); 2023 Nov; 14(12):. PubMed ID: 38138325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tip-Sonicated Red Phosphorus-Graphene Nanoribbon Composite for Full Lithium-Ion Batteries.
    Wang T; Wei S; Villegas Salvatierra R; Han X; Wang Z; Tour JM
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):38936-38943. PubMed ID: 30354051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoporous Red Phosphorus on Reduced Graphene Oxide as Superior Anode for Sodium-Ion Batteries.
    Liu S; Xu H; Bian X; Feng J; Liu J; Yang Y; Yuan C; An Y; Fan R; Ci L
    ACS Nano; 2018 Jul; 12(7):7380-7387. PubMed ID: 29927234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile and Scalable Synthesis of Zn
    Yan H; Luo Y; Xu X; He L; Tan J; Li Z; Hong X; He P; Mai L
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27707-27714. PubMed ID: 28750161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of uniform Si nanoparticles for high-performance Li-ion battery anodes.
    Sun L; Su T; Xu L; Du HB
    Phys Chem Chem Phys; 2016 Jan; 18(3):1521-5. PubMed ID: 26667776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. P-Doping a Porous Carbon Host Promotes the Lithium Storage Performance of Red Phosphorus.
    Han X; Meng X; Chen S; Zhou J; Wang M; Sun L; Jia Y; Peng X; Mai H; Zhu G; Li J; Bielawski CW; Geng J
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):11713-11722. PubMed ID: 36802456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encapsulation of Red Phosphorus in Carbon Nanocages with Ultrahigh Content for High-Capacity and Long Cycle Life Sodium-Ion Batteries.
    Liu W; Du L; Ju S; Cheng X; Wu Q; Hu Z; Yu X
    ACS Nano; 2021 Mar; 15(3):5679-5688. PubMed ID: 33719408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Se
    Lin WL; Zhong HY; Huang YE; Lu X; Zhao Y; Zhang JX; Du KZ; Wu XH
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 34479214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes.
    Wang L; Gao B; Peng C; Peng X; Fu J; Chu PK; Huo K
    Nanoscale; 2015 Sep; 7(33):13840-7. PubMed ID: 26098990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Synthesis of Pre-Lithiated LiTiO
    Lu C; Fang R; Gan Y; He X; Xiao Z; Huang H; Zhang J; Xia X; Zhang W; Xia Y
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):898-906. PubMed ID: 38154079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homogeneous Adsorption of Multiple Potassiation Products of Red Phosphorus Anode toward Stable Potassium Storage.
    Wang F; Yang T; Feng W; Ren J; Chen X; Cheng C; Luo W; Liao X; Mai L
    ACS Nano; 2024 Jul; 18(26):17197-17208. PubMed ID: 38952325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-small Co3O4 nanoparticles-reduced graphene oxide nanocomposite as superior anodes for lithium-ion batteries.
    Lou Y; Liang J; Peng Y; Chen J
    Phys Chem Chem Phys; 2015 Apr; 17(14):8885-93. PubMed ID: 25742903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-surface conversion reaction realizes advanced red phosphorus/carbon anode for high-performance lithium-ion batteries.
    Huang Y; Li H; Wu M; Tian T; Wang R; Zeng S; Song J; Tang H
    J Colloid Interface Sci; 2024 Oct; 672():117-125. PubMed ID: 38833731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.