These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 30411376)

  • 1. Penalized variable selection for accelerated failure time models with random effects.
    Park E; Ha ID
    Stat Med; 2019 Feb; 38(5):878-892. PubMed ID: 30411376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variable selection in subdistribution hazard frailty models with competing risks data.
    Ha ID; Lee M; Oh S; Jeong JH; Sylvester R; Lee Y
    Stat Med; 2014 Nov; 33(26):4590-604. PubMed ID: 25042872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Penalized variable selection for cause-specific hazard frailty models with clustered competing-risks data.
    Rakhmawati TW; Ha ID; Lee H; Lee Y
    Stat Med; 2021 Dec; 40(29):6541-6557. PubMed ID: 34541690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fixed and random effects selection in mixed effects models.
    Ibrahim JG; Zhu H; Garcia RI; Guo R
    Biometrics; 2011 Jun; 67(2):495-503. PubMed ID: 20662831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On variable selection in a semiparametric AFT mixture cure model.
    Parsa M; Taghavi-Shahri SM; Van Keilegom I
    Lifetime Data Anal; 2024 Apr; 30(2):472-500. PubMed ID: 38436831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variable selection in the cox regression model with covariates missing at random.
    Garcia RI; Ibrahim JG; Zhu H
    Biometrics; 2010 Mar; 66(1):97-104. PubMed ID: 19459831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regularized Weighted Nonparametric Likelihood Approach for High-Dimension Sparse Subdistribution Hazards Model for Competing Risk Data.
    Tapak L; Kosorok MR; Sadeghifar M; Hamidi O; Afshar S; Doosti H
    Comput Math Methods Med; 2021; 2021():5169052. PubMed ID: 34589136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint variable selection for fixed and random effects in linear mixed-effects models.
    Bondell HD; Krishna A; Ghosh SK
    Biometrics; 2010 Dec; 66(4):1069-77. PubMed ID: 20163404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-dimensional Cox models: the choice of penalty as part of the model building process.
    Benner A; Zucknick M; Hielscher T; Ittrich C; Mansmann U
    Biom J; 2010 Feb; 52(1):50-69. PubMed ID: 20166132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous variable selection for joint models of longitudinal and survival outcomes.
    He Z; Tu W; Wang S; Fu H; Yu Z
    Biometrics; 2015 Mar; 71(1):178-187. PubMed ID: 25223432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On estimation for accelerated failure time models with small or rare event survival data.
    Alam TF; Rahman MS; Bari W
    BMC Med Res Methodol; 2022 Jun; 22(1):169. PubMed ID: 35689190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Penalized joint generalized estimating equations for longitudinal binary data.
    Huang Y; Pan J
    Biom J; 2022 Jan; 64(1):57-73. PubMed ID: 34587284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable selection in semiparametric nonmixture cure model with interval-censored failure time data: An application to the prostate cancer screening study.
    Sun L; Li S; Wang L; Song X
    Stat Med; 2019 Jul; 38(16):3026-3039. PubMed ID: 31032999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model selection in multivariate semiparametric regression.
    Li Z; Liu H; Tu W
    Stat Methods Med Res; 2018 Oct; 27(10):3026-3038. PubMed ID: 28164740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable selection for binary spatial regression: Penalized quasi-likelihood approach.
    Feng W; Sarkar A; Lim CY; Maiti T
    Biometrics; 2016 Dec; 72(4):1164-1172. PubMed ID: 27061299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On hazard-based penalized likelihood estimation of accelerated failure time model with partly interval censoring.
    Li J; Ma J
    Stat Methods Med Res; 2020 Dec; 29(12):3804-3817. PubMed ID: 32689908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variable selection for longitudinal zero-inflated power series transition model.
    Alsalim N; Baghfalaki T
    J Biopharm Stat; 2021 Sep; 31(5):668-685. PubMed ID: 34325620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variable selection using inverse probability of censoring weighting.
    Kojima M
    Stat Methods Med Res; 2023 Nov; 32(11):2184-2206. PubMed ID: 37675496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Network-Constrain Weibull AFT Model for Biomarkers Discovery.
    Angelini C; De Canditiis D; De Feis I; Iuliano A
    Biom J; 2024 Oct; 66(7):e202300272. PubMed ID: 39308119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VARIABLE SELECTION FOR REGRESSION MODELS WITH MISSING DATA.
    Garcia RI; Ibrahim JG; Zhu H
    Stat Sin; 2010 Jan; 20(1):149-165. PubMed ID: 20336190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.