BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 3041141)

  • 21. Antagonism of dermorphin-induced catalepsy with naloxone, TRH-analog CG3703 and the benzodiazepine antagonist, Ro 15-1788.
    Paakkari P; Feuerstein G
    Neuropharmacology; 1988 Oct; 27(10):1007-12. PubMed ID: 2907115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Benzodiazepine-induced intestinal motor disturbances in rats: mediation by omega 2 (BZ2) sites on capsaicin-sensitive afferent neurones.
    Bonnafous C; Scatton B; Buéno L
    Br J Pharmacol; 1994 Sep; 113(1):268-74. PubMed ID: 7812620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in benzodiazepine-receptor activity modify morphine withdrawal syndrome in mice.
    Valverde O; Micó JA; Maldonado R; Gibert-Rahola J
    Drug Alcohol Depend; 1992 Aug; 30(3):293-300. PubMed ID: 1327709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Centrally administered bombesin affects gastrointestinal transit and colonic bead expulsion through supraspinal mechanisms.
    Koslo RJ; Burks TF; Porreca F
    J Pharmacol Exp Ther; 1986 Jul; 238(1):62-7. PubMed ID: 3755171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wood creosote prevents CRF-induced motility via 5-HT3 receptors in proximal and 5-HT4 receptors in distal colon in rats.
    Ataka K; Kuge T; Fujino K; Takahashi T; Fujimiya M
    Auton Neurosci; 2007 May; 133(2):136-45. PubMed ID: 17182287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neurotensin: a central neuromodulator of gastrointestinal motility in the dog.
    Bueno L; Fioramonti J; Fargeas MJ; Primi MP
    Am J Physiol; 1985 Jan; 248(1 Pt 1):G15-9. PubMed ID: 3966557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interruption of parturition in rats by morphine: a result of inhibition of oxytocin secretion.
    Russell JA; Gosden RG; Humphreys EM; Cutting R; Fitzsimons N; Johnston V; Liddle S; Scott S; Stirland JA
    J Endocrinol; 1989 Jun; 121(3):521-36. PubMed ID: 2754376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of morphine on colonic myoelectric and motor activity in subhuman primates.
    Frantzides CT; Condon RE; Schulte WJ; Cowles V
    Am J Physiol; 1990 Feb; 258(2 Pt 1):G247-52. PubMed ID: 2305891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The spinal cord as a site of opioid effects on gastrointestinal transit in the mouse.
    Porreca F; Burks TF
    J Pharmacol Exp Ther; 1983 Oct; 227(1):22-7. PubMed ID: 6312019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms of the influence of midazolam on morphine antinociception at spinal and supraspinal levels in rats.
    Luger TJ; Hayashi T; Lorenz IH; Hill HF
    Eur J Pharmacol; 1994 Dec; 271(2-3):421-31. PubMed ID: 7705442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Colonic bead expulsion time in normal and mu-opioid receptor deficient (CXBK) mice following central (ICV) administration of mu- and delta-opioid agonists.
    Raffa RB; Mathiasen JR; Jacoby HI
    Life Sci; 1987 Nov; 41(19):2229-34. PubMed ID: 2823042
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative effects of opiate agonists on proximal and distal colonic motility in dogs.
    Bardon T; Ruckebusch Y
    Eur J Pharmacol; 1985 Apr; 110(3):329-34. PubMed ID: 3891382
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of vagal afferents in the antinociception produced by morphine and U-50,488H in the colonic pain reflex in rats.
    Diop L; Rivière PJ; Pascaud X; Dassaud M; Junien JL
    Eur J Pharmacol; 1994 May; 257(1-2):181-7. PubMed ID: 8082700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancement of colonic motor response to feeding by central endogenous opiates in the dog.
    Fioramonti J; Buéno L; Fargeas MJ
    Life Sci; 1985 Jul; 36(26):2509-14. PubMed ID: 3892216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Central and peripheral inhibition of gastrointestinal transit in rats: narcotics differ substantially by acting at either or both levels.
    Peracchia F; Bianchi G; Fiocchi R; Petrillo P; Tavani A; Manara L
    J Pharm Pharmacol; 1984 Oct; 36(10):699-701. PubMed ID: 6150093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Central effects of neuropeptide FF on intestinal motility in naive and morphine-dependent rats.
    Gelot A; Fioramonti J; Zajac JM; Bueno L
    Neuropeptides; 1995 Nov; 29(5):245-50. PubMed ID: 8587659
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Phe-D-Met-Arg-Phe-NH2 and other Phe-Met-Arg-Phe-NH2-related peptides on mouse colonic propulsive motility: a structure-activity relationship study.
    Raffa RB; Jacoby HI
    J Pharmacol Exp Ther; 1990 Sep; 254(3):809-14. PubMed ID: 1975622
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Peripheral antagonistic action of trimebutine and kappa opioid substances on acoustic stress-induced gastric motor inhibition in dogs.
    Gué M; Pascaud X; Hondé C; Junien JL; Buéno L
    Eur J Pharmacol; 1988 Jan; 146(1):57-63. PubMed ID: 2895010
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reversal of CRF- and dopamine-induced stimulation of colonic motility by CCK and igmesine (JO 1784) in the rat.
    Gué M; Gleïzes-Escala C; Del Rio-Lacheze C; Junien JL; Buéno L
    Br J Pharmacol; 1994 Mar; 111(3):930-4. PubMed ID: 7912631
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modification of morphine-induced locomotor activity by pertussis toxin: biochemical and behavioral studies in mice.
    Funada M; Suzuki T; Narita M; Misawa M; Nagase H
    Brain Res; 1993 Aug; 619(1-2):163-72. PubMed ID: 8374774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.